Math, asked by sanak5ulali, 1 year ago

Integration of sin4x/sinx

Answers

Answered by Adeela14
3
hope it helps .

.
.
.
.
 :P, :D

Attachments:
Answered by Haezel
2

Answer:

Integration of \bold{\frac{\sin 4 x}{\sin x}=\frac{2}{3} \sin 3 x+3 \sin x-4 \sin x+c}

Step-by-step explanation:

\begin{array}{l}{\int \frac{\sin 4 x}{\sin x}=\int \frac{2 \sin 2 x \cos 2 x}{\sin x}} \\ {\because \sin 2 x=2 \sin x \cos x} \\ {=\int \frac{2 \times 2 \sin x \cos x \times \cos 2 x}{\sin x}} \\ {=4 \int \frac{\sin x \cos x \times \cos 2 x}{\sin x}}\end{array}

Cancelling sinx, we get,

=4 \int \cos x \times \cos 2 x

Here cos2x is written as \bold{2 \cos ^{2} x-1} according to the formula,  

\begin{array}{l}{=4 \int \cos x\left(2 \cos ^{2} x-1\right)} \\ {=4 \int 2 \cos ^{3} x \times \cos x}\end{array}

Again using the formula,

=\frac{8}{4} \int(\cos 3 x+3 \cos x)-4 \int \cos x

[Since,\cos 3 x=4 \cos ^{3} x-3 \cos x \Rightarrow \cos ^{3} x=\frac{\cos 3 x+3 \cos x}{4} ]

=2\left(\frac{\sin 3 x}{3}+3 \sin x\right)-4 \sin x+c

=\frac{2}{3} \sin 3 x+3 \sin x-4 \sin x+c

∴Integration of \bold{\frac{\sin 4 x}{\sin x}=\frac{2}{3} \sin 3 x+3 \sin x-4 \sin x+c}

Similar questions