Integration of tan^3(2x).sec2x
Answers
Answered by
1
sec^3 (2x) tan (2x) dx = (1/2) sec^3(2x) tan(2x) d(2x)
= (1/2) sec^2(2x) sec(2x) tan(2x) dx
= (1/2) sec^2(2x) d(sec(2x))
so
Integral[sec^3 (2x) tan (2x) dx] = (1/2) Integral[sec^2(2x) d(sec(2x))]
= (1/2) [sec(2x)]^3 / (3) + constant
= (1/6) sec^3(2x) + constant
You might feel more comfortable using the change of variable
y = sec(2x)
which would give dy = 2 sec(2x)tan(2x) dx
so that
sec^3 (2x) tan (2x) dx = (1/2) y^2 dy
and then you integrate to get (1/6) y^3 = (1/6) sec^3(2x) + constant
= (1/2) sec^2(2x) sec(2x) tan(2x) dx
= (1/2) sec^2(2x) d(sec(2x))
so
Integral[sec^3 (2x) tan (2x) dx] = (1/2) Integral[sec^2(2x) d(sec(2x))]
= (1/2) [sec(2x)]^3 / (3) + constant
= (1/6) sec^3(2x) + constant
You might feel more comfortable using the change of variable
y = sec(2x)
which would give dy = 2 sec(2x)tan(2x) dx
so that
sec^3 (2x) tan (2x) dx = (1/2) y^2 dy
and then you integrate to get (1/6) y^3 = (1/6) sec^3(2x) + constant
Similar questions
India Languages,
8 months ago
Hindi,
8 months ago
Computer Science,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Hindi,
1 year ago