Math, asked by palanandmoyp99klw, 1 year ago

integration of tan inverse root x

Answers

Answered by Ezekiel1
9
integral tan^-1√x.1= now use integral by parts. I can't solve now but it may help u
Answered by wagonbelleville
12

Answer:

The integration of \int{\arctan \sqrt{x}} \, dx is (x+1)\arctan \sqrt{x}-\sqrt{x}

Step-by-step explanation:

We have to integrate L=\int{\arctan \sqrt{x}} \, dx

Let, u=\sqrt{x}

Then, du= \frac{1}{2\sqrt{x}}dx i.e. 2u du=dx

Substituting the values, we get,

L=\int{2u\arctan u} \, du

i.e. L=2\int{u\arctan u} \, du

Using integration by parts, we have,

L=2[(\arctan u\int\limits{u} \, du)- (\frac{d}{du}(\arctan u)\int\limits {u} \, du)]

i.e. L=2[(\frac{u^2}{2}\arctan u)-(\frac{1}{2}\int\limits {\frac{u^2}{1+u^2} \, du)]

i.e. L=2[(\frac{u^2}{2}\arctan u)-(\frac{1}{2}\int\limits {\frac{1+u^2-1}{1+u^2} \, du)]

i.e. L=2[(\frac{u^2}{2}\arctan u)-(\frac{1}{2}\int\limits \,du)+(\frac{1}{2}\int\limits {\frac{1}{1+u^2} \, du)

i.e. L=2[(\frac{u^2}{2}\arctan u)-(\frac{u}{2})+(\frac{1}{2}\arctan u)]

i.e. L=u^2\arctan u-u+\arctan u

i.e. L=(u^2+1)\arctan u-u

i.e. L=((\sqrt{x})^2+1)\arctan \sqrt{x}-\sqrt{x}

i.e. L=(x+1)\arctan \sqrt{x}-\sqrt{x}

Thus, the integration of \int{\arctan \sqrt{x}} \, dx is (x+1)\arctan \sqrt{x}-\sqrt{x}

Similar questions