Math, asked by sahilkamble1119, 11 months ago

integration of tan@​

Answers

Answered by rishu6845
2

Answer:

- log cosθ Or log Secθ

Step-by-step explanation:

To find-----> ∫ tanθ dθ

Solution-----> Let ,

I = ∫ tanθ dθ

= ∫ ( Sinθ / Cosθ ) dθ

= ∫ Sinθ dθ / Cosθ

Let, Cosθ = t

=> - Sinθ dθ = dt

=> Sinθ dθ = - dt

I = ∫ - dt / t

= - ∫ dt / t

= - logt + C

Putting t = Cosθ , in it , we get,

= - log Cosθ + C

= - 1 × log Cosθ + C

We know that, n logx = log xⁿ , applying it we get,

= log ( Cosθ )⁻¹ + C

= log ( 1 / Cosθ ) + C

We know that, 1 / Cosθ = Secθ , we get,

= log ( Secθ ) + C

Answered by Anonymous
120

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{\int tan \left(\theta\right)d\theta}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\int tan \left(\theta\right)d\theta}\bf{=-\ln \left|cos \left(\theta\right)\right|+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Use\:the\:following\:identity}:\quad \tan \left(x\right)=\dfrac{\sin \left(x\right)}{\cos \left(x\right)}

=\int \dfrac{\sin \left(\theta\right)}{\cos \left(\theta\right)}d\theta

\text { Apply u - substitution: } u=\cos (\theta)

\sf{=\int \:-\dfrac{1}{u}du}

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=-\int \dfrac{1}{u}du

\mathrm{Use\:the\:common\:integral}:\quad \int \dfrac{1}{u}du=\ln \left(\left|u\right|\right)

=-\ln \left|u\right|

\mathrm{Substitute\:back}\:u=\cos \left(\theta\right)

=-\ln \left|\cos \left(\theta\right)\right|

\mathrm{Add\:a\:constant\:to\:the\:solution}

\boxed{\bf{=-\ln \left|\cos \left(\theta\right)\right|+C}}

Similar questions