Math, asked by siddharthjoshi1224, 1 year ago

integration of tanx^1÷2

Answers

Answered by abhi178
2
II = \int\limits {\sqrt{tanx}} \, dx
we directly can't  find out this integration. by using some step we can do it .
step 1:-  find integration of 
\int(\sqrt{tanx} +\sqrt{cotx}).dx
\int\frac{(sinx+cosx)}{\sqrt{sinx.cosx}}.dx\\=\sqrt{2}\int\frac{(sinx+cosx)}{\sqrt{sin2x}}
             let z = \int(sinx+cosx)dx
                    = -cosx +sinx 
dz = (sinx+cosx).dx 
                now use this results in above,
then integration convert in
            I = \sqrt{2}\int\frac{dz}{\sqrt{1-z^2}}
              =\sqrt{2}sin^{-1}z\\=\sqrt{2}sin^{-1}(sinx-cosx)
step2:- similarly find out integration of 
    I = \int(\sqrt{tanx}-\sqrt{cotx}).dx
      = \sqrt{2}ln(-sinx-cosx)+\sqrt{(-sinx-cosx)^2-1})

step 3:- now add both inegrations .

i.e.  I =
\int(\sqrt{tanx}+\sqrt{cotx})dx+\int(\sqrt{tanx}-\sqrt{cotx})dx\\=2\int{\sqrt{tanx}.dx

so, finally inegration we get ,
I = \int\sqrt{tanx}dx\\
==\frac{1}{\sqrt{2}} [sin^{-1}(sinx-cosx)+ln(-sinx-cosx+\sqrt{(-sinx-cosx)^2-1})]

Similar questions