Math, asked by llXlitzunknownlXll, 1 month ago

Integration of —
 \ \\  \huge \int\sqrt{(3x - 4)^{3} } \:  dx

___________________________
___________________________
(only for class 11th & 12th students)
___________________________

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf \sqrt{(3x - 4)^{3} } \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\sf  {\bigg( {(3x - 4)}^{3} \bigg) }^{ \dfrac{1}{2} }  \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\sf  {\bigg( {3x - 4} \bigg) }^{ \dfrac{3}{2} }  \: dx

We know,

\red{ \boxed{ \sf{ \:\displaystyle\int\sf  {(ax + b)}^{n} =  \frac{ {(ax + b)}^{n + 1} }{(n + 1)a} + c}}}

So, using this, we get

\rm \:  =  \:  \dfrac{{\bigg[3x - 4 \bigg]}^{\dfrac{3}{2} + 1}}{\bigg[\dfrac{3}{2} + 1\bigg] \times 3}   + c

\rm \:  =  \:  \dfrac{{\bigg[3x - 4 \bigg]}^{\dfrac{3 + 2}{2}}}{\bigg[\dfrac{3 + 2}{2}\bigg] \times 3}   + c

\rm \:  =  \:  \dfrac{{\bigg[3x - 4 \bigg]}^{\dfrac{5}{2}}}{\bigg[\dfrac{5}{2}\bigg] \times 3}   + c

\rm \:  =  \: \dfrac{2}{15} {\bigg[3x - 4 \bigg]}^{\dfrac{5}{2}} + c

Hence,

\red{ \boxed{ \sf{ \:\displaystyle\int\bf \sqrt{(3x - 4)^{3} } \: dx  =  \: \dfrac{2}{15} {\bigg[3x - 4 \bigg]}^{\dfrac{5}{2}} + c}}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by guptaananya2005
124

 \sf \displaystyle \int \: (3x - 4) {}^{ \frac{3}{2} }  \: dx

 \sf =  \frac{ {(3x - 4)}^{ \frac{3}{2} + 1 } }{ (\frac{3}{2}  + 1) \times 3}  + c

 \sf =  \frac{ {(3x - 4)}^{ \frac{5}{2} } }{ (\frac{5}{2}) \times 3}  + c

 \sf =  \frac{ {(3x - 4)}^{ \frac{5}{2} } }{ (\frac{15}{2})}  + c

 \sf =  \frac{2 {(3x - 4)}^{ \frac{5}{2} } }{15}  + c

Similar questions