Math, asked by ace61, 1 year ago

integration of (x+1)dx/x(1+xe^x)^2

Answers

Answered by Anonymous
21
hope it help you dear.....
Attachments:
Answered by Anonymous
13

The integration of the given function is,

\int\limits  \,\frac{x+1}{x(1+xe^x)^2}  dx = log(\frac{xe^x}{1 + xe^x} ) + \frac{1}{1+xe^x}+C

  • Now, we have

     \int\limits  \,\frac{x+1}{x(1+xe^x)^2}  dx               - (1)

  • Let

                1 + xe^x = t\\xe^x = t-1\\        - (2)

         differentiating with respect to 'x', we get

               (e^x + xe^x ) dx = dt \\e^x(1 +x) dx = dt\\(1+x)dx=\frac{dt}{e^x}

  • Now,  We can write (1) as

                 \int\limits  \,\frac{1}{xe^xt^2}  dt

       now, from (2) :

           \int\limits  \,\frac{1}{(t-1)t^2}  dt      -(3)

  • By using integration by parts ,   \frac{1}{(t-1)t^2} can be written as,

          \frac{1}{(t-1)t^2} = \frac{1}{t-1} - \frac{t+1}{t^2}

          therefore, (3) becomes,

          \int\limits \, \frac{1}{(t-1)t^2}dt = \int\limits \, \frac{1}{t-1}dt - \int\limits \,  \frac{t+1}{t^2}dt

             = log(t-1) - logt + \frac{1}{t} + C

             = log(\frac{t-1}{t} ) + \frac{1}{t}+C

  • Now substituting the value of 't' from (2), we get

             = log(\frac{xe^x}{1 + xe^x} ) + \frac{1}{1+xe^x}+C

        therefore we get the integration of the given function as,

           \int\limits  \,\frac{x+1}{x(1+xe^x)^2}  dx = log(\frac{xe^x}{1 + xe^x} ) + \frac{1}{1+xe^x}+C

Similar questions