Math, asked by sutharsoham6651, 2 months ago

Integration of (x^11/2) dx​

Answers

Answered by AbhinavRocks10
100

\large{❏} {\large{\boxed{\sf{∫\frac{1}{x²-6x+11}.dx}}}}

\large{=} {\large{\boxed{\sf{∫\frac{1}{x²-6x+9+2}.dx}}}}

\large{=} {\large{\boxed{\sf{∫\frac{1}{(x-3)²+(\sqrt{2})²}.dx}}}}

{\large{\boxed{\red{\sf{∫\frac{1}{x²+a²}.dx=\frac{1}{a}Tan^{-1} (\frac{x}{a})+c}}}}}

\large{=}{\large{\boxed{\sf{\frac{1}{\sqrt{2}}Tan^{-1} (\frac{x-3}{\sqrt{2}})+c}}}}

Answered by Anonymous
17

Answer:

\int {x}^{ \frac{11}{2} }dx

 = \frac{x {}^{\frac{11}{2}  + 1} }{ \frac{11}{2}  + 1}

 =  \frac{x {}^{ \frac{11 + 2}{2} } }{ \frac{11 + 2}{2} }

 =   \frac{x {}^{ \frac{13}{2} } }{ \frac{13}{2} }

 =  \frac{2}{13} (x {}^{ \frac{13}{2} }) + c

_____________________

Note :

\int x {}^{n}dx =  \frac{x {}^{n + 1} }{n + 1} (n ≠  - 1)

Be Brainly!

Similar questions