Math, asked by singhsanjay531, 1 year ago

Integration of x^2/(xsinx+cosx)^2 dx

Answers

Answered by Anonymous
10
I=∫x2(xsinx+cosx)2dx

Apply the Pythagorean trigonometric identity 1=sin2x+cos2x:

I=∫(x2sin2x+x2cos2x(xsinx+cosx)2)dx

Add 0=xsinxcosx−xsinxcosx to the numerator:

I=∫(x2sin2x+xsinxcosx−xsinxcosx+x2cos2x(xsinx+cosx)2)dx

Factorize:

I=∫((xsinx+cosx)(xsinx)+(xcosxsinx)(xcosx)(xsinx+cosx)2)dx

For ease of understanding, define u(x)=xcosxsinx and v(x)=xsinx+cosx:

I=∫(vdudx+udvdxv2)dx

This fits the form of the quotient rule, hence:

I=xcosxsinxxsinx+cosx+C
Answered by Rachayita
5
x^2/(xsinx+cosx)^2 dx
I hope it will help u
Please mark me as Brainliest
App's Name- Photomaths
Attachments:
Similar questions