Integration of x^2/(xsinx+cosx)^2 dx
Answers
Answered by
10
I=∫x2(xsinx+cosx)2dx
Apply the Pythagorean trigonometric identity 1=sin2x+cos2x:
I=∫(x2sin2x+x2cos2x(xsinx+cosx)2)dxAdd 0=xsinxcosx−xsinxcosx to the numerator:
I=∫(x2sin2x+xsinxcosx−xsinxcosx+x2cos2x(xsinx+cosx)2)dxFactorize:
I=∫((xsinx+cosx)(xsinx)+(xcosx−sinx)(xcosx)(xsinx+cosx)2)dxFor ease of understanding, define u(x)=xcosx−sinx and v(x)=xsinx+cosx:
I=∫(vdudx+udvdxv2)dxThis fits the form of the quotient rule, hence:
I=xcosx−sinxxsinx+cosx+C
Answered by
5
x^2/(xsinx+cosx)^2 dx
I hope it will help u
Please mark me as Brainliest
App's Name- Photomaths
I hope it will help u
Please mark me as Brainliest
App's Name- Photomaths
Attachments:
Similar questions