integration of x square + 1 into X square + 2 divide by X square + 3 into X square + 4
Attachments:
ShivamMalvi:
what are the limits?
Answers
Answered by
9
Answer:
x + 2tan^-1(x/√3)/√3 – 6tan^-1(x/2)/2 + C
Step-by-step explanation:
Integrate (x²+1)(x²+2) / (x²+3)(x²+4)
F(x) = (x²+1)(x²+2) / (x²+3)(x²+4)
Simplify F(x) first.
F(x) = (x²+3 - 2)(x²+4 – 2) / (x²+3)(x²+4)
= ((x² + 3)( x² + 4) -2(x² + 4) -2(x² + 3) + 4) / ((x² + 3) (x² + 4)
= 1 – 2/( x² + 3) -2/( x² + 4) + 4/(( x² +3)( x² + 4))
= 1 – 2/( x² + 3) -2/(x² + 4) + 4 (1/( x² +3) – 1/( x² + 4))
= 1 + 2/( x² + 3) – 6/(x² + 4)
F(x) = 1 + 2/( x² + 3) – 6/(x² + 4)
Integrating F(x), we get
= ∫(1) dx + 2 ∫(1/( x² + (√3)²)) dx - 6∫(1/( x² + 2²)) dx
= x + 2tan^-1(x/√3)/√3 – 6tan^-1(x/2)/2 + C
Where C is a constant.
Answered by
22
GIVEN:-
now,
[as, we know:-
Similar questions