Integration of x to the power of - 1 dx
Answers
We know that :-
Where c is constant.
Answer :
_______________________
Learn more :-
∫ 1 dx = x + C
∫ sin x dx = – cos x + C
∫ cos x dx = sin x + C
∫ sec²x dx = tan x + C
∫ csc²x dx = -cot x + C
∫ sec x (tan x) dx = sec x + C
∫ csc x ( cot x) dx = – csc x + C
∫ (1/x) dx = ln |x| + C
∫ ex dx = ex+ C
∫ ax dx = (ax/ln a) + C
Answer:
⟹∫x
−1
dx
We know that :-
\implies \sf \boxed{ \displaystyle \sf{a}^{ - 1} = \frac{1}{a} }⟹
a
−1
=
a
1
\implies \sf \displaystyle \int \sf{x}^{ - 1} dx = \sf \displaystyle \int \sf \dfrac{1}{x} dx⟹∫x
−1
dx=∫
x
1
dx
\implies\sf \displaystyle \int \sf \dfrac{1}{x} dx = log(x) + c⟹∫
x
1
dx=log(x)+c
Where c is constant.
Answer :
\sf \displaystyle \int \large\sf{x}^{ - 1} dx = \large \sf \: log(x) + c∫x
−1
dx=log(x)+c
_______________________
Learn more :-
∫ 1 dx = x + C
∫ sin x dx = – cos x + C
∫ cos x dx = sin x + C
∫ sec2 dx = tan x + C
∫ csc2 dx = -cot x + C
∫ sec x (tan x) dx = sec x + C
∫ csc x ( cot x) dx = – csc x + C
∫ (1/x) dx = ln |x| + C
∫ ex dx = ex+ C
∫ ax dx = (ax/ln a) + C