Math, asked by Ronaldosarvesh, 1 year ago

Integration of x²sinx

Answers

Answered by snehitha2
3
Hii friend!!

 \int\limits {x^{2}} {sin x} dx \\ \\ = (-cos x) x^{2} - (-cos x) . 2xdx \\ \\ = -2(-cos x)xd  x - x^{2} cos x \\ \\ = -2 . (-x cos xd x) - x^{2} cos x\\  \\ = -2 (-sinxx + sin xdx) - x^{2} cos x \\ \\ = -2 ( -cos x - x sin x ) - x^{2}cosx \\ \\ = -x^{2}cos x - 2(-xsinx - cosx) \\ \\ = -x^{2} cos x + 2x sin x + 2cosx + C
Answered by Anonymous
126

♣ Qᴜᴇꜱᴛɪᴏɴ :

\huge\boxed{\sf{\int \:x^2sinx\:\:dx}}

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{\int \:x^2\sin \left(x\right)dx=-x^2\cos \left(x\right)+2\left(x\sin \left(x\right)+\cos \left(x\right)\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\text { Apply Integration By Parts: } u=x^{2}, v^{\:\prime}=\sin (x)}

\sf{=-x^2\cos \left(x\right)-\int \:-2x\cos \left(x\right)dx}

\sf{\int-2 x \cos (x) d x=-2(x \sin (x)+\cos (x))}

\sf{=-x^2\cos \left(x\right)-\left(-2\left(x\sin \left(x\right)+\cos \left(x\right)\right)\right)}

\mathrm{Simplify}

\sf{=-x^2\cos \left(x\right)+2\left(x\sin \left(x\right)+\cos \left(x\right)\right)}

\sf{Add\:a\:constant\:to\:the\:solution}

\Large\boxed{\sf{=-x^2\cos \left(x\right)+2\left(x\sin \left(x\right)+\cos \left(x\right)\right)+C}}

Similar questions