Math, asked by preetiranirwr98, 2 months ago

integration sin theta cos^4 theta

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \limits^{ \frac{\pi}{2} }_{0} \sin( \theta)  \cos^{4} ( \theta)d \theta \\

 \int \limits^{ \frac{\pi}{2} }_{0}  \cos^{3} ( \theta) .\sin( \theta)  \cos ( \theta)d \theta \\

 =   -  \frac{1}{2} \int \limits^{ \frac{\pi}{2} }_{0} (  \cos^{2} ( \theta))^{ \frac{3}{2} }  . (- 2\sin( \theta)  \cos ( \theta))d \theta \\

let \:  \:  \cos^{2} ( \theta)  = t \\  \implies - 2 \sin( \theta)  \cos( \theta) d \theta = dt

 =   -  \frac{1}{2} \int \limits^{ 0 }_{1} ( t)^{ \frac{3}{2} }  dt \\

 =   \frac{1}{2} \int \limits^{1 }_{0} ( t)^{ \frac{3}{2} }  dt \\

 =  \frac{2}{5 \times 2}  .[t ^{ \frac{5}{2} }]^{1}_{0}

 =  \frac{1}{5} (1 - 0) \\

 =  \frac{1}{5}

Answered by kashmirsingh071981
0

Step-by-step explanation:

plz mark my answer as brainliest

Attachments:
Similar questions