Math, asked by THEmultipleTHANKER, 2 months ago

Integration:-

{\displaystyle {\int \cfrac{\sec^2x}{\cosec^2x}dx}}​​

Answers

Answered by Anonymous
10

Solution:-

 \bold \green{\displaystyle {\int \cfrac{\sec^2x}{\cosec^2x}dx}}

 \large {\int {\frac{1}{  \frac{ \cos^2x }{ \frac{1}{ \sin^2x }  }dx}}}

 \large { \int( \frac{1  }{ { \cos }^{2}x } \times  \frac{ { \sin }^{2}x }{1})dx  }

  \large{ \int \frac{ \sin^{2}x  }{ \cos^{2}x } dx}

 \large{ \int \tan^{2}x  \: dx  }

────────────────────────

 { \fbox{ \sf{\green{we  \: know \: that  }}}}

1 +  { \tan }^{2} xθ  =   { \sec }^{2}θ 

  { \tan }^{2} θ  =  { \sec }^{2} θ  - 1

────────────────────────

 =  \int( { \sec }^{2}x - 1)dx

 =  \int { \sec }^{2} x  \: dx -  \int1dx

 =  \int { \sec }^{2} x \: dx -  \int1dx

  =  \int { \sec }^{2}x  \: dx -  \int {x}^{0}  dx

 =   \tan x -  \frac{ {x}^{0} + 1 }{0 + 1} +  c

 =  \tan x -  \frac{ {x}^{1} }{1} + c

 =  \bold  {\tan x - x + c}

──────────────────────────

Hope the above concept is clear

Answered by Anonymous
8

Answer:

\huge\blue{\mid{\fbox{\tt{αηsωєя✿࿐}}\mid}}

Please refer to the above attachment

Attachments:
Similar questions