Math, asked by madhurisangle123, 7 months ago

integration( x^4/4)dx​

Answers

Answered by Asterinn
3

\implies\displaystyle \int  \dfrac{ {x}^{4} }{4} dx

\implies  \dfrac{ {x}^{(4 + 1)} }{4{(4 + 1)}}  + c

where c is constant.

\implies  \dfrac{ {x}^{(5)} }{4 \times {5}}  + c

\implies  \dfrac{ {x}^{5} }{20}  + c

Answer :-

\implies  \dfrac{ {x}^{5} }{20}  + c

_________________________

VERIFICATION OF ANSWER :-

If we differentiate ( x⁵/20+c) then we will get x⁴/4.

\implies  \dfrac{d( \dfrac{ {x}^{5} }{20})}{dx}   +  \dfrac{d(c)}{dx}

\implies  5   \times \dfrac{ {x}^{4} }{20}   +  0

\implies    \dfrac{ {x}^{4} }{4}

hence verified

______________________

\large\bf\blue{Additional-Information}

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

______________________

Similar questions