integration x ×sinxsqure
Answers
Answered by
1
Answer:
−12cosx2+C
Explanation:
Let t=x2, then
dt=2xdx,xdx=dt2
∫xsinx2dx=∫sintdt2=12∫sintdt=
=−12cost+C=−12cosx2+C
−12cosx2+C
Explanation:
Let t=x2, then
dt=2xdx,xdx=dt2
∫xsinx2dx=∫sintdt2=12∫sintdt=
=−12cost+C=−12cosx2+C
Answered by
0
Similar questions