Math, asked by arshdeepbajwa5531, 9 hours ago

Integration = x³ tan⁴ x⁴ sec² x⁴

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle\int\rm \:  {x}^{3} \:  {tan}^{4} {x}^{4} \:  {sec}^{2} {x}^{4} \: dx \:

can be re-arranged as

\rm \:  =  \: \displaystyle\int\rm \:  {tan}^{4} {x}^{4} \:  \red{ {sec}^{2} {x}^{4} \:  {x}^{3}}  \: dx \:

can be further rewritten as

\rm \:  =  \: \displaystyle\int\rm \:   {( {tanx}^{4})}^{4}  \:  \red{ {sec}^{2} {x}^{4} \:  {x}^{3}}  \: dx \:

To evaluate this integral we use Method of Substitution

So, Substitute

\rm \:  {tanx}^{4} = y

\rm \:  \dfrac{d}{dx}{tanx}^{4} = \dfrac{dy}{dx}

\rm \:  {sec}^{2} {x}^{4} \: ( {4x}^{3}) \: dx \:  =  \: dy

\rm\implies \:\rm \:  {x}^{3}  {sec}^{2} {x}^{4} \: dx \:  =  \: \dfrac{dy}{4}

So, above integral can be rewritten as

\rm \:  =  \: \dfrac{1}{4} \displaystyle\int  {y}^{4}  \: dy

\rm \:  =  \: \dfrac{1}{4}  \times \dfrac{ {y}^{4 + 1} }{4 + 1}  + c

\rm \:  =  \:  \dfrac{ {y}^{5} }{20}  + c

\rm \:  =  \:  \dfrac{ {tan}^{5}  {x}^{4} }{20}  + c

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle\int\rm \:  {x}^{3} \:  {tan}^{4} {x}^{4} \:  {sec}^{2} {x}^{4} \: dx \:  =  \frac{ {tan}^{5} {x}^{4} }{20} + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx}tanx =  {sec}^{2}x \: }} \\

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

\boxed{\tt{ \displaystyle\int  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} \:  +  \: c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by XxitzZBrainlyStarxX
6

Question:-

Integration = x³ tan⁴ x⁴ sec² x⁴.

Given:-

Integral is x³ tan⁴ x⁴ sec² x⁴.

To Find:-

Integration of given function w.r.t.x = ?.

Solution:-

 \sf \large \int x {}^{3} .tan {}^{4} .x {}^{4} .sec {}^{2} .x {}^{4}  \: dx

 \sf \large Let,x {}^{4}  = t ⇒ 4x {}^{3}  \: dx = dt⇒x {}^{3}  \: dx =  \frac{1}{4}  \: dt

 \sf \large =  \frac{1}{4}  \int tan {}^{ {}^{4} }  \: t.sec {}^{2}  \: t  \:  \: dt

 \sf \large Now, let  \: tan \:  t = u ⇒ sec²  \: t . dt = du

 \sf \large =  \frac{1}{4}  \int u {}^{4} .du

 \sf \large = \frac{1}{4} . \frac{u {}^{5} }{5}  + c

 \sf \large =  \frac{1}{4}  \times  \frac{1}{5} (tan \: t) {}^{5}  + c

 \sf \large =  \frac{1}{20} tan {}^{5} \: x {}^{4}   + c

Answer:-

 \sf \large  \blue{Hence, the \:  Integration \:  of \:  given \: } \\  \sf \large \blue{ function \:  is  \:  \frac{1}{20} tan {}^{5} \: x {}^{4}   + c.}

Hope you have satisfied.

Similar questions