Math, asked by adarsh2497, 1 year ago

integretionx^4+1/x^2+1 dx​

Answers

Answered by abdulbasith93
0

( {x}^{5}  \div 5) - (1 \div x) + x

Answered by Swarup1998
4
\underline{\textsf{Solution :}}

\mathsf{Now,\:\frac{x^{4}+1}{x^{2}+1}}

\mathsf{=\frac{(x^{2}+1)^{2}-2x^{2}}{x^{2}+1}}

\mathsf{=\frac{(x^{2}+1)^{2}}{x^{2}+1}-\frac{2x^{2}}{x^{2}+1}}

\mathsf{=x^{2}+1-2\frac{(x^{2}+1)-1}{x^{2}+1}}

\mathsf{=x^{2}+1-2+\frac{2}{x^{2}+1}}

\mathsf{=x^{2}-1+\frac{2}{x^{2}+1}}

\to \mathsf{\frac{x^{4}+1}{x^{2}+1}=x^{2}-1+\frac{2}{x^{2}+1}}

\textsf{On integration, we get}

\mathsf{\int \frac{x^{4}+1}{x^{2}+1}=\int x^{2}dx-\int dx+\int\frac{2}{x^{2}+1}}

\mathsf{=\frac{x^{3}}{3}-x+2\:tan^{-1}x+C}

\textsf{where C is integral constant}

\to \boxed{\small{\mathsf{\int \frac{x^{4}+1}{x^{2}+1}=\frac{x^{3}}{3}-x+2\:tan^{-1}x+C}}}

Anonymous: awesome sir....
Swarup1998: :)
Similar questions