Math, asked by janetvarghese9269, 2 days ago

Intergrate with respect to t 1/ (cos^2t)√1+tant

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\displaystyle\tt{\int\dfrac{dt}{{cos}^{2}(t)\sqrt{1+tan(t)}}}

\displaystyle=\tt{\int\dfrac{{sec}^{2}(t)}{\sqrt{1+tan(t)}}\,dt}

\bf{Put\,\,\,1+tan(t)=x}

\bf{\implies\,sec^2(t)\,dt=dx}

\displaystyle=\tt{\int\dfrac{dx}{\sqrt{x}}}

\displaystyle=\tt{2\sqrt{x}+C}

\displaystyle=\tt{2\sqrt{1+tan(t)}+C}

Similar questions