Math, asked by Durgesh8398, 1 year ago

intigral of cot invars x​

Answers

Answered by vaibhudeva
0

(integral) cot x = ln|sin x| + C.


Durgesh8398: galt
Answered by Swarup1998
21
\boxed{\underline{\textsf{Question :}}}

\textsf{Find integration of}\: \int cot^{-1}x\:dx

\boxed{\underline{\textsf{Method 1 :}}}

\textsf{Let,}\:cot^{-1}x=z

\implies \textsf{x = cotz}

\textsf{Then,}\:dx=-cosec^{2}z\:dz

\textsf{Also,}\:sinz=\frac{1}{\sqrt{x^{2}+1}}

\textsf{Now,}\: \int cot^{-1}x\:dx

=\int (-z\:cosec^{2}z)dz

=\int z\int (-cosec^{2}z)dz

-\int \{\frac{d}{dz}(z)*\int (-cosec^{2}z)dz\}dz

=z\:cotz-\int cotz\:dz

=zcotz-log(sinz)+C

\textsf{where C is integral constant.}

=x\:cot^{-1}x-log\bigg(\frac{1}{\sqrt{x^{2}+1}}\bigg)+C

=x\:cot^{-1}x-log(x^{2}+1)^{-\frac{1}{2}}+C

=x\:cot^{-1}x+\frac{1}{2}log(x^{2}+1)+C

\textsf{which is the required integral.}

\boxed{\underline{\textsf{Method 2 :}}}

\textsf{Now,}\: \int cot^{-1}x\:dx

=cot^{-1}x \int dx - \int \{\frac{d}{d}(cot^{-1}x)\int dx\}dx

=x\:cot^{-1}x - \int \frac{x\:dx}{-(1+x^{2})}+C

\textsf{where C is integral constant.}

=x\:cot^{-1}x+ \frac{1}{2} \int \frac{2x\:dx}{1+x^{2}}

=x\:cot^{-1}x+\frac{1}{2} log(1+x^{2})+C

\textsf{which is the required integral.}

\boxed{\underline{\textsf{Finding}}\: \int \frac{2x\:dx}{1+x^{2}}}

\textsf{Let,}\:1+x^{2}=z

\textsf{Then,}\:2x\:dx=dz

\textsf{So,}\:\int \frac{2x\:dx}{1+x^{2}}

=\int \frac{dz}{z}

=logz+C

\textsf{where C is integral constant.}

=log(1+x^{2})+C

\textsf{which is the required integral.}
Similar questions