Math, asked by cheenugarg966, 9 months ago

intigration of cotx​

Answers

Answered by diwanamrmznu
17

★GIVEN:-

 \implies \int{ \cot \: x \: dx }

find:-

given quantity value

solution:-

  \implies \int \:   \cot \: x \: dx

we know that

cot x= cos x /sin x

 \implies \int \:  \frac{ \cos \: x }{ \sin\:  x } dx  -  -  - (1)\\  \\

let

sin x= t----------(2)

EQ 2 value put on EQ 1

 \implies \:  \int \:  \frac{ \cos \: x \: dx }{t}  -  - (3) \\

sin x= t differciation with respect to x

 \implies \:   \frac{d}{dx} \sin x  =  \frac{d}{dt} (t)\\

we know that

 \implies \pink{ \frac{d}{dx}  \sin \: x  =  \cos \: x } \\

 \implies \:  \cos \: x \: dx = dt -  -  - (4) \\

equition (4) value put on EQ (3)

 \implies \int \:  \frac{dt}{t}  \\

we know that

 \implies  \pink{\int \:  \frac{1}{x} = log |x| + c }\\

 \implies \:  log |t|  + c -  -  - (5) \\

equition (2) value put on EQ (5)

 \implies \pink{ log | \sin \: x |  + c}

________________________________

I hope it helps you

Similar questions