Math, asked by monishagoala72, 2 months ago

intrigrat the rational functions:. (x^2+1)(x^2+2)÷(x^2+3)(x^2+4)​

Answers

Answered by veenasharma9163
0

Answer:

this is positive or negative

write the heading

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int \sf \:\dfrac{( {x}^{2}  + 1)( {x}^{2} + 2)}{( {x}^{2}  + 3)( {x}^{2} + 4)}dx

\rm :\longmapsto\:Let \:  {x}^{2}  = y -  - (1)

So, given expression reduced to

\rm :\longmapsto\:\sf \:\dfrac{( {x}^{2}  + 1)( {x}^{2} + 2)}{( {x}^{2}  + 3)( {x}^{2} + 4)} = \dfrac{(y + 1)(y + 2)}{(y + 3)(y + 4)}

Now, using Partial Fraction, we have

\rm :\longmapsto\:\dfrac{(y + 1)(y + 2)}{(y + 3)(y + 4)} =1 + \dfrac{a}{y + 3}  + \dfrac{b}{y + 4}  -  - - (2)

\rm :\longmapsto\:(y + 1)(y + 2) = (y + 3)(y +4) + a(y + 4) + b(y + 3) -  - (3)

On substituting y = - 3, we get

\rm :\longmapsto\:( - 3 + 1)( - 3 + 2) = ( - 3 + 3)( - 3+4) + a( - 3 + 4) + b( - 3 + 3)

\rm :\longmapsto\:( - 2)( - 1) = a(1)

\bf\implies \:a = 2

On substituting y = - 4, we get

\rm :\longmapsto\:( - 4 + 1)( - 4 + 2) = ( - 4 + 3)( - 4+4) + a( - 4 + 4) + b( - 4 + 3)

\rm :\longmapsto\:( - 3)( - 2) = b( - 1)

\bf\implies \:b =  -  \: 6

Now substituting the values of a and b in equation (2), we get

\rm :\longmapsto\:\dfrac{(y + 1)(y + 2)}{(y + 3)(y + 4)} =1 + \dfrac{2}{y + 3}   -  \dfrac{6}{y + 4}

Now substituting the value of y, from equation (1), we get

\rm :\longmapsto\:\dfrac{( {x}^{2}  + 1)( {x}^{2}  + 2)}{( {x}^{2}  + 3)( {x}^{2}  + 4)} =1 + \dfrac{2}{ {x}^{2}  + 3}   -  \dfrac{6}{ {x}^{2}  + 4}

Thus,

On integrating both sides, w. r. t. x, we get

\rm :\longmapsto\:\displaystyle\int \sf \: \dfrac{( {x}^{2}  + 1)( {x}^{2}  + 2)}{( {x}^{2}  + 3)( {x}^{2}  + 4)}dx =\displaystyle\int \sf \: 1dx + \displaystyle\int \sf \: \dfrac{2}{ {x}^{2}  + 3}dx-\displaystyle\int \sf \: \dfrac{6}{ {x}^{2}  + 4}dx

 \: \rm  \:  \:  =x+2 \displaystyle\int \sf \: \dfrac{1}{ {x}^{2}  +  {( \sqrt{3} )}^{2} }dx-6\displaystyle\int \sf \:\dfrac{1}{ {x}^{2}  +  {2}^{2} }dx

 \rm \:  =  \:  \: x + 2 \times \dfrac{1}{ \sqrt{3} } {tan}^{ - 1}\dfrac{x}{ \sqrt{3} } - 6 \times\dfrac{1}{2} {tan}^{ - 1}\dfrac{x}{2} + c

  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \because \sf \: \displaystyle\int \sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  = \dfrac{1}{a}  {tan}^{ - 1} \dfrac{x}{a}  + c}

 \rm \:  =  \:  \: x + \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\dfrac{x}{ \sqrt{3} } - 3{tan}^{ - 1}\dfrac{x}{2} + c

Additional Information :-

 \boxed{ \sf \: \displaystyle\int \sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  = \dfrac{1}{a}  {tan}^{ - 1} \dfrac{x}{a}  + c}

 \boxed{ \sf \: \displaystyle\int \sf \: \dfrac{dx}{ {x}^{2}  -   {a}^{2} }  = \dfrac{1}{2a} log\dfrac{x + a}{x - a}  + c}

Similar questions