Intriguing one.
Solve for x and y.
Answers
Answered by
3
Answer :
Given that
1/(x + y) = 12/13
⇒ x + y = 13/12 ...(i)
1/(x - y) = 11/13
⇒ x - y = 13/11 ...(ii)
Now, adding (i) and (ii), we get
x + y + x - y = 13/12 + 13/11
⇒ 2x = (143 + 156)/132, since LCM (12, 11) = 132
⇒ 2x = 299/132
⇒ x = 299/264
From (i), we get
299/264 + y = 13/12
⇒ y = 13/12 - 299/264
⇒ y = - 13/264
Therefore, the required solution be
x = 299/264, y = - 13/264
#MarkAsBrainliest
Given that
1/(x + y) = 12/13
⇒ x + y = 13/12 ...(i)
1/(x - y) = 11/13
⇒ x - y = 13/11 ...(ii)
Now, adding (i) and (ii), we get
x + y + x - y = 13/12 + 13/11
⇒ 2x = (143 + 156)/132, since LCM (12, 11) = 132
⇒ 2x = 299/132
⇒ x = 299/264
From (i), we get
299/264 + y = 13/12
⇒ y = 13/12 - 299/264
⇒ y = - 13/264
Therefore, the required solution be
x = 299/264, y = - 13/264
#MarkAsBrainliest
Answered by
2
Given :
12x + 12y = 13 ----- (1)
11x - 11y = 13 ------- (2)
On adding (1) & (2), we get
12x + 12y + 11x - 11y = 13 + 13
23x + y = 26 ----- (3)
On subtracting (1) & (2), we get
12x + 12y - 11x + 11y = 13 - 13
x + 23y = 0 ------- (4)
On solving (3) & (4) * 23, we get
23x + y = 26
23x + 529y = 0
--------------------------
-528y = 26
y = -26/528
y = -13/264
Substitute y = -13/264 in (3), we get
23x + y = 26
23x + (-13/264) = 26
23x - 13/264 = 26
23x = 26 + 13/264
23x = 6877/264
x = 6877/264 * 23
x = 6877/6072
x = 299/264.
Therefore the value of x = -13/264, y = 299/264.
Hope this helps!
12x + 12y = 13 ----- (1)
11x - 11y = 13 ------- (2)
On adding (1) & (2), we get
12x + 12y + 11x - 11y = 13 + 13
23x + y = 26 ----- (3)
On subtracting (1) & (2), we get
12x + 12y - 11x + 11y = 13 - 13
x + 23y = 0 ------- (4)
On solving (3) & (4) * 23, we get
23x + y = 26
23x + 529y = 0
--------------------------
-528y = 26
y = -26/528
y = -13/264
Substitute y = -13/264 in (3), we get
23x + y = 26
23x + (-13/264) = 26
23x - 13/264 = 26
23x = 26 + 13/264
23x = 6877/264
x = 6877/264 * 23
x = 6877/6072
x = 299/264.
Therefore the value of x = -13/264, y = 299/264.
Hope this helps!
Similar questions