Math, asked by jhansiranibehera20, 6 hours ago

Inverse Laplace transform of \( \frac{1}{(s^2+1)(5-1)(s+5)} V is?
\( \frac{1}{(s^2+1)(s-1)(s+5)} V DAT JOC ALTH CİH9TH ?
IN
Select one:
O a. No frac{1}{12} e^t- \frac{1}{13}cos(t)-\frac{1}{12}sin(t)-\frac{1}{156}e^-{^5}{^t} V
ob. Nfrac{1}{2} e^-{^t}-\frac{1}{6}e^t-\frac{1}{3} e^-{^2}{^t} V
oc. \frac{1}{12} e^t+ \frac{1}{13}cos(t)-\frac{1}{12}sin(t)-\frac{1}{156}e^-{^5}{^t} V
d. 6 - \frac{5}{2} e^-{"t}+\frac{1}{6}e^t+\frac{1}{3} ,^2}{^t} V​

Answers

Answered by ouk1122334455
0

Step-by-step explanation:

mzsksjzjzjzxjjzjzzjjzjzjzkxskks

Answered by mjkhichi5
0

Answer:

Find the envelope of the straight line − = ^2 where ‘t’ is the parameter.,

Similar questions