Math, asked by jhonvivas4207, 11 months ago

Inverse of A[1 2 3]
2 3 1
2 1 2]

Answers

Answered by shadowsabers03
0

We have to find the inverse of,

A=\left[\begin{tabular}{ccc}1&2&3\\&&&&&\\2&3&1\\&&&&&\\2&1&2\end{tabular}\right]

Let me have an augmented matrix,

(A\ |\ I)=\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\2&3&1&0&1&0\\&&&&&\\2&1&2&0&0&1\end{tabular}\right]

So let's begin!

\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\2&3&1&0&1&0\\&&&&&\\2&1&2&0&0&1\end{tabular}\right]\xrightarrow{R_2-R_3\to R_2}\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\2&1&2&0&0&1\end{tabular}\right]\\\\\\\\\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\2&1&2&0&0&1\end{tabular}\right]\xrightarrow{R_3-2R_1\to R_3}\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&2&3&1&0&0\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]\xrightarrow{R_1-R_2\to R_1}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]\\\\\\\\\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&2&-1&0&1&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]\xrightarrow{2R_2+R_3\to R_2}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&-3&-4&-2&0&1\end{tabular}\right]\xrightarrow{3R_2+R_3\to R_3}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&0&-22&-8&6&-2\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&0&-22&-8&6&-2\end{tabular}\right]\xrightarrow{-\frac{1}{2}R_3\to R_3}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&0&11&4&-3&1\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&-6&-2&2&-1\\&&&&&\\0&0&11&4&-3&1\end{tabular}\right]\xrightarrow{R_2+R_3\to R_2}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&11&4&-3&1\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&11&4&-3&1\end{tabular}\right]\xrightarrow{\frac{1}{11}R_3\to R_3}\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&4&1&-1&1\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]\xrightarrow{R_1-4R_3\to R_1}\left[\begin{tabular}{ccc|ccc}1&0&0&$-\dfrac{5}{11}$&$\dfrac{1}{11}$&$\dfrac{7}{11}$\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&0&$-\dfrac{5}{11}$&$\dfrac{1}{11}$&$\dfrac{7}{11}$\\&&&&&\\0&1&5&2&-1&0\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]\xrightarrow{R_2-5R_3\to R_2}\left[\begin{tabular}{ccc|ccc}1&0&0&$-\dfrac{5}{11}$&$\dfrac{1}{11}$&$\dfrac{7}{11}$\\&&&&&\\0&1&0&$\dfrac{2}{11}$&$\dfrac{4}{11}$&$-\dfrac{5}{11}$\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]

\left[\begin{tabular}{ccc|ccc}1&0&0&$-\dfrac{5}{11}$&$\dfrac{1}{11}$&$\dfrac{7}{11}$\\&&&&&\\0&1&0&$\dfrac{2}{11}$&$\dfrac{4}{11}$&$-\dfrac{5}{11}$\\&&&&&\\0&0&1&$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]=(I\ |\ A^{-1})

Finally,

A^{-1}=\left[\begin{tabular}{ccc}$-\dfrac{5}{11}$&$\dfrac{1}{11}$&$\dfrac{7}{11}$\\\\$\dfrac{2}{11}$&$\dfrac{4}{11}$&$-\dfrac{5}{11}$\\\\$\dfrac{4}{11}$&$-\dfrac{3}{11}$&$\dfrac{1}{11}$\end{tabular}\right]

Or,

11A^{-1}=\left[\begin{tabular}{ccc}$-5$&$1$&$7$\\\\$2$&$4$&$-5$\\\\$4$&$-3$&$1$\end{tabular}\right]

Similar questions