Math, asked by shagufanaaz0308, 6 months ago

Investigate the values λ and μ for the system x + 2y + 3z = 6, x + 3y + 5z = 9, 2x + 5y + λz = μ
i) no soln.
ii) unique soln
iii) infinite no. of solns

Answers

Answered by mathdude500
4

Answer:

\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: For\:no\:solution : \:\lambda=8,\:\mu\:\ne\:15\qquad \: \\ \\& \qquad \:\sf \: For\:unique\:solution : \:\lambda  \: \ne \: 8,\:\mu\:\in\:R\\ \\& \qquad \:\sf \: For\:infinitely \:many\:solution : \:\lambda=8,\:\mu = 15\end{aligned}} \qquad \: \\  \\

Step-by-step explanation:

Given system of linear equations is

\sf \: x + 2y + 3z = 6 \:  \:  \:  \\  \\ \sf \: x + 3y + 5z = 9 \:  \:  \:  \\  \\ \sf \: 2x + 5y + \lambda z = mu  \\  \\

The above system of linear equations can be represented in matrix form as

\sf \: \left[\begin{array}{ccc}1&2&3\\1&3&5\\2&5& \lambda\end{array}\right] \: \left[\begin{array}{c}x\\y\\z\end{array}\right] \:  =  \: \left[\begin{array}{c}6\\9\\ \mu\end{array}\right] \\  \\

where,

\sf \: A = \left[\begin{array}{ccc}1&2&3\\1&3&5\\2&5& \lambda\end{array}\right] \\  \\

\sf \: B = \left[\begin{array}{c}6\\9\\\mu\end{array}\right] \\  \\

\sf \: X = \left[\begin{array}{c}x\\y\\z\end{array}\right] \\  \\

Now, Consider

\sf \:  \rho[A:B ] \\  \\

\qquad\sf \:  =  \: \left[\begin{array}{ccc}1&2&3\: \:  :&6\\1&3&5\: \:  :&9\\2&5& \lambda\: \:  :&\mu\end{array}\right] \\  \\

\qquad\qquad\sf \: OP\:R_2\:\to\:R_2 - R_1 \\  \\

\qquad\sf \:  =  \: \left[\begin{array}{ccc}1&2&3\: \:  :&6\\0&1&2\: \:  :&3\\2&5& \lambda\: \:  :&\mu\end{array}\right] \\  \\

\qquad\qquad\sf \: OP\:R_3\:\to\:R_3 - 2R_1 \\  \\

\qquad\sf \:  =  \: \left[\begin{array}{ccc}1&2&3\: \:  :&6\\0&1&2\: \:  :&3\\0&1& \lambda - 6\: \:  :&\mu - 12\end{array}\right] \\  \\

\qquad\qquad\sf \: OP\:R_3\:\to\:R_3 - R_2 \\  \\

\qquad\sf \:  =  \: \left[\begin{array}{ccc}1&2&3\: \:  :&6\\0&1&2\: \:  :&3\\0&0& \lambda - 8\: \:  :&\mu - 15\end{array}\right] \\  \\

(i) Now, for system has no solution

\sf \:  \rho(A) \:  \ne \:  \rho[ A:B] \\  \\

\sf\implies  \: \lambda  - 8 = 0 \:  \: and \:  \:  \mu - 15 \:  \ne \: 0 \\  \\

\sf\implies  \: \lambda  = 8 \:  \: and \:  \:  \mu \:  \ne \: 15 \\  \\

(ii) Now, for system has unique solution

\sf \:  \rho(A) =  \rho[ A:B]  =  number \: of \: variables \\  \\

\sf \:  \rho(A) =  \rho[ A:B]  =  3 \\  \\

\sf\implies \sf \: \lambda  - 8  \:  \ne \:  0 \:  \: and \:  \:  \mu \:  \in \: R \\  \\

\sf\implies \sf \: \lambda  \:  \ne \: 8\:  \: and \:  \:  \mu \:  \in \: R \\  \\

(iii) Now, for system of equations has infinitely many solutions.

\sf \:  \rho(A) =  \rho[ A:B] < number \: of \: variables \\  \\

So, using this result, we get

\sf \:  \rho(A) =  \rho[ A:B] < 3 \\  \\

So, it means

\sf \: \lambda - 8 = 0 \:  \: and \:  \: \mu - 15 = 0 \\  \\

\sf\implies \sf \: \lambda = 8 \:  \: and \:  \: \mu = 15\\  \\

Hence,

\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: For\:no\:solution : \:\lambda=8,\:\mu\:\ne\:15\qquad \: \\ \\& \qquad \:\sf \: For\:unique\:solution : \:\lambda  \: \ne \: 8,\:\mu\:\in\:R\\ \\& \qquad \:\sf \: For\:infinitely \:many\:solution : \:\lambda=8,\:\mu = 15\end{aligned}} \qquad \: \\  \\

Similar questions