Math, asked by sheshadri8130, 1 year ago

Ir the p term of an AP is
(pq+1)
and the
term is 1/p
show that the sum of pq term is pq+1/2​

Answers

Answered by harishreddy2k
1

Step-by-step explanation:

Given pth term = 1/q

a + (p - 1)d = 1/q

aq + (pq - q)d = 1  --- (1)

Similarly, 

 ap + (pq - p)d = 1  --- (2)

From (1) and (2), we get

aq + (pq - q)d = ap + (pq - p)d 

aq - ap = d[pq - p - pq + q]

a(q - p) = d(q - p)

Therefore, a = d

Equation (1) becomes,

dq + pqd - dq = 1  

d = 1/pq

Hence a = 1/pq

Consider, Spq = (pq/2)[2a + (pq - 1)d]

                        = (pq/2)[2(1/pq) + (pq - 1)(1/pq)]

        

                        = (1/2)[2 + pq - 1]

         

                        = (1/2)[pq + 1]

Similar questions