is a bar is equals to 3 ICAP + J cap + 2 k cap and b bar is equals to two ICAP - 2 J cap + 4K cab then unit vector perpendicular to the plane containing a bar and Bieber is.
Answers
Answer:
The required vectors are
Explanation:
Formula used:
The unit vector perpendicular to both are
Given:
The unit vector perpendicular to both
Answer:
Answer:
The required vectors are
\vec{n}=\pm\frac{(\vec{i}-\vec{j}-\vec{k})}{\sqrt{3}}n=±3(i−j−k)
Explanation:
Formula used:
The unit vector perpendicular to both \vec{a}\:and\:\vec{b}aandb are
\vec{n}=\pm\frac{(\vec{a}\times\vec{b})}{|\vec{a}\times\vec{b}|}n=±∣a×b∣(a×b)
Given:
\vec{a}=3\vec{i}+\vec{j}+2\vec{k}a=3i+j+2k
\vec{b}=2\vec{i}-2\vec{j}+4\vec{k}b=2i−2j+4k

\vec{a}\times\vec{b}=\vec{i}(4+4)-\vec{j}(12-4)+\vec{k}(-6-2)a×b=i(4+4)−j(12−4)+k(−6−2)
\vec{a}\times\vec{b}=8\vec{i}-8\vec{j}-8\vec{k}a×b=8i−8j−8k
\implies\:\vec{a}\times\vec{b}=8(\vec{i}-\vec{j}-\vec{k})⟹a×b=8(i−j−k)
|\vec{a}\times\vec{b}|=8\sqrt{1+1+1}∣a×b∣=81+1+1
|\vec{a}\times\vec{b}|=8\sqrt{3}∣a×b∣=83
The unit vector perpendicular to both \vec{a}\:and\:\vec{b}aandb
=\pm\frac{(\vec{a}\times\vec{b})}{|\vec{a}\times\vec{b}|}=±∣a×b∣(a×b)
=\pm\frac{8(\vec{i}-\vec{j}-\vec{k})}{8\sqrt{3}}=±838(i−j−k)
=\pm\frac{(\vec{i}-\vec{j}-\vec{k})}{\sqrt{3}}=±3(i−j−
............$iiiij