Math, asked by sahil648, 1 year ago

Is cos theta +sec theta = root 3, prove that cos cube theta +sec cube theta = 0

Answers

Answered by MaheswariS
16

\textbf{Concept used:}

\text{If x+y+z=0, then }x^3+y^3+z^3=3xyz

\textbf{Given:}

cos\,\theta+sec\,\theta=\sqrt{3}

\implies\,cos\,\theta+sec\,\theta+(-\sqrt{3})=0

\text{By the given concept, we get}

cos^3\theta+sec^3\theta+(-\sqrt{3})^3=3\,cos\,\theta\,sec\,\theta\,(-\sqrt{3})

\implies\,cos^3\theta+sec^3\theta-3\sqrt{3}=-3\sqrt{3}\,cos\,\theta(\frac{1}{cos\,\theta})

\implies\,cos^3\theta+sec^3\theta-3\sqrt{3}=-3\sqrt{3}

\implies\,cos^3\theta+sec^3\theta=-3\sqrt{3}+3\sqrt{3}

\implies\boxed{\bf\,cos^3\theta+sec^3\theta=0}

Similar questions