Math, asked by rahu2Duvs3hiv, 1 year ago

Is cosecA + cotA = p then prove that cosA = p^2 - 1 / p^2 + 1

Answers

Answered by ShivajiK
102
Cos A = (p²–1)÷(p²+1)
Attachments:
Answered by mysticd
56

Solution:

We have,

cosecA+cotA = p -----(1)

Now, cosec²A-cot²A=1

=> (cosecA+cotA)(cosecA-cotA)=1

=> p×(cosecA-cotA)=1

=> cosecA-cotA = \frac{1}{p} ----(2)

adding and subtracting (1) and

(2), we get

i)(cosecA+cotA)+(cosecA-cotA)=p+\frac{1}{p}

=> 2cosecA= \frac{(p^{2}+1)}{p}

=>cosecA= \frac{(p^{2}+1)}{2p} ---(3)

ii)(cosecA+cotA)-(cosecA-cotA)=p-\frac{1}{p}

=> 2cotA= \frac{(p^{2}-1)}{p}

=>cotA= \frac{(p^{2}-1)}{2p} ---(4)

Now ,

cosA = \frac{cotA}{cosecA}

/* from (3) and (4) */

=\frac{\frac{(p^{2}-1)}{2p}}{\frac{(p^{2}+1)}{2p}}

= \frac{p^{2}-1}{p^{2}+1}

••••

Similar questions