Math, asked by tanulovehercousion, 1 year ago

is diagonals of parrlogaram are equal then show that it is reactangle

Answers

Answered by ramtanu51
5
Let ABCD be a parallelogram. To show that ABCD is a rectangle, we have to prove that one of its interior angles is 90º.

In ΔABC and ΔDCB,

AB = DC (Opposite sides of a parallelogram are equal)

BC = BC (Common)

AC = DB (Given)

∴ ΔABC ≅ ΔDCB (By SSS Congruence rule)

⇒ ∠ABC = ∠DCB

It is known that the sum of the measures of angles on the same side of transversal is 180º.

∠ABC + ∠DCB = 180º (AB || CD)

⇒ ∠ABC + ∠ABC = 180º

⇒ 2∠ABC = 180º

⇒ ∠ABC = 90º

Since ABCD is a parallelogram and one of its interior angles is 90º, ABCD is a rectangle.

Answered by tusharbittu
2


Given : A parallelogram ABCD , in which AC = BD 

TO Prove : ABCD  is a rectangle .

Proof : In △ABC and △ABD

AB = AB [common]

AC = BD [given]

BC = AD [opp . sides of a | | gm]

⇒ △ABC ≅ △BAD [ by SSS congruence axiom]

⇒ ∠ABC = △BAD [c.p.c.t.]

Also, ∠ABC + ∠BAD = 180° [co - interior angles]

⇒ ∠ABC + ∠ABC = 180° [∵ ∠ABC = ∠BAD]

⇒ 2∠ABC = 180° 

⇒ ∠ABC = 1 /2 × 180° = 90° 

Hence, parallelogram ABCD is a rectangle.   

Similar questions