Is f(x)=x2+sinx an even or odd function?
Answers
Answered by
9
Now
Therefore f(x) is neither odd nor even function.
hope it helps
hello8514:
hi needthat
Answered by
1
(x)=f(−x)f(x)isanevenfunctioniff(x)=−f(−x)thenitisanoddfunctioniff(x)notequalstof(−x)or−f(−x)thenf(x)isnietheroddnorevenfunction
Now
\\ \\ f( - x) = {( - x)}^{2} + \sin( - x ) \\ \\ f( - x) = {x}^{2} - \sin \: x\end{lgathered}f(x)=x2+sinxf(−x)=(−x)2+sin(−x)f(−x)=x2−sinx
Therefore f(x) is neither odd nor even function.
hope it helps
Now
\\ \\ f( - x) = {( - x)}^{2} + \sin( - x ) \\ \\ f( - x) = {x}^{2} - \sin \: x\end{lgathered}f(x)=x2+sinxf(−x)=(−x)2+sin(−x)f(−x)=x2−sinx
Therefore f(x) is neither odd nor even function.
hope it helps
Similar questions