Math, asked by ruhi6425, 1 year ago

Is f(x)=x2+sinx an even or odd function?

Answers

Answered by Needthat
9

if \\  \\ f(x) = f( - x) \\  \\ f(x) \: is \: an \: even \: function \\  \\ if \\  \\ f(x) =  - f( - x) \:  \\ then \: it \: is \: an \: odd \: function \\  \\ if \\  \\ f(x) \: not \: equals \: to \: f( - x) \: or \: -  f( - x) \:  \\ then \: f(x) \: is \: niether \: odd \: nor \: even \: function

Now

f(x) =  {x}^{2}  +  \sin \: x  \\  \\ f( - x) =  {( - x)}^{2}  +  \sin( - x )  \\  \\ f( - x) =  {x}^{2}  -  \sin \: x

Therefore f(x) is neither odd nor even function.

hope it helps


hello8514: hi needthat
hello8514: whats ur name
anuj9296: follow me
anuj9296: i will thanks in ur answer
Answered by anuj9296
1
(x)=f(−x)f(x)isanevenfunctioniff(x)=−f(−x)thenitisanoddfunctioniff(x)notequalstof(−x)or−f(−x)thenf(x)isnietheroddnorevenfunction​

Now

\begin{lgathered}f(x) = {x}^{2} + \sin \: x \\ \\ f( - x) = {( - x)}^{2} + \sin( - x ) \\ \\ f( - x) = {x}^{2} - \sin \: x\end{lgathered}f(x)=x2+sinxf(−x)=(−x)2+sin(−x)f(−x)=x2−sinx​

Therefore f(x) is neither odd nor even function.

hope it helps

Similar questions