Math, asked by darshangarg871, 1 month ago

Is the given statement true or false?
Radius of convergence of the function f(x)=e^x is 1.
Justify your answer.​

Answers

Answered by pulakmath007
14

SOLUTION

TO CHECK

True / False below statement :

Radius of convergence of the function  \displaystyle \sf{f(x) =  {e}^{x} } is 1

EVALUATION

Here the given function is

 \displaystyle \sf{f(x) =  {e}^{x} }

Now the power series expansion is

 \displaystyle \sf{f(x) =  {e}^{x}  = 1 + x +  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{3} }{3!} + .. +  \frac{ {x}^{n} }{n!}   + .. }

Now the coefficient in n th term

 \displaystyle \sf{a_{n} =  \frac{1}{n!}  }

Thus we get

 \displaystyle \sf{a_{n + 1} =  \frac{1}{(n + 1)!}  }

Now

Radius of convergence R is given by

\displaystyle  \sf{R = \lim_{n \to  \infty }   \bigg| \frac{a_n }{a_{n + 1} } \bigg| }

\displaystyle  \sf{ \implies \: R = \lim_{n \to  \infty }   \bigg| \frac{(n + 1)!}{n!} \bigg| }

\displaystyle  \sf{ \implies \: R = \lim_{n \to  \infty }   \bigg| \frac{(n + 1) \times n!}{n!} \bigg| }

\displaystyle  \sf{ \implies \: R = \lim_{n \to  \infty }   \bigg| (n + 1) \bigg| }

\displaystyle  \sf{ \implies \: R =  \infty  }

So the given statement is FALSE

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. radius of curvature of the curve x^2/3 + y^2/3 = a^2/3

https://brainly.in/question/13357557

2. the jacobian of p,q,r with respect to x,y,z where p=x+y+z ,q=y+z,r=z

https://brainly.in/question/33073346

Similar questions