Math, asked by sharad6721, 10 months ago

Is x+1 a factor of x^20-1 and x^51-1

Answers

Answered by aabhakrvijay
1

Step-by-step explanation:

x+1=0

x= -1

if p(-1)=0

then (x+1) will factor of p(x)

p(x)= x²⁰-1

p(-1)=(-1)²⁰-1=1-1=0

hence (x+1) is factor of x²⁰-1

again, p(x)=x⁵¹-1

p(-1)=(-1)⁵¹-1=-1-1=2

hence (x+1) is not the factor of x⁵¹-1

Answered by Blossomfairy
8

  :  \implies\sf \purple{x + 1 = 0}  \\ : \  \implies \sf{ x= 0 - 1} \\  :   \implies\sf{x =  - 1}

_________________________....

 :  \implies \sf \red{ {x}^{20}  - 1} \\ :   \implies \sf{ { (- 1)}^{20} - 1 } \\  : \implies \sf{1 - 1} \\  : \implies \sf{0}

_________________________....

  :  \implies \sf \red{ {x}^{51}  - 1} \\  :  \implies \sf{ { (- 1)}^{51} - 1 } \\  : \implies \sf{ - 1 - 1} \\  : \implies \sf{ - 2}

 \bf \purple{ \therefore \:  {x}^{20}  - 1 \: is \: a \: factor \: of \: x + 1}

 \bf \purple{ \therefore \:  {x}^{51}  - 1 \: is\: not \: a \: factor \: of \: x + 1}

Similar questions