Math, asked by sushantabetti203, 6 hours ago

iscuss the continuty of when f(x) = {X ^2-25/x-5 when xis not equal to 5 and 9 when x=5

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{ \dfrac{ {x}^{2}  - 25}{x - 5}  \: when \: x \ne \: 5} \\ \\  &\sf{9 \:  \: when \: x \:  = 5} \end{cases}\end{gathered}\end{gathered}

We know,

By definition of Continuity of a function

A function f(x) is said to be continuous at x = a iff

\rm :\longmapsto\:\boxed{\tt{ f(5) = \displaystyle\lim_{x \to 5}\rm f(x) \: }}

So, from the given function we have

\rm :\longmapsto\:\boxed{\tt{ f(5) = 9}} -  -  -  - (1)

Now, Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 5}\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 25}{x - 5}

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  -  {5}^{2} }{x - 5}

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \frac{ \cancel{(x - 5)} \: (x + 5)}{ \cancel{x - 5}}

\rm \:  =  \:\displaystyle\lim_{x \to 5}\rm (x + 5)

\rm \:  =  \: 5 + 5

\rm \:  =  \: 10

\rm\implies \:\boxed{\tt{ \displaystyle\lim_{x \to 5}\rm f(x) = 10}} -  -  -  - (2)

So, from equation (1) and (2), we concluded that

\rm :\longmapsto\:\boxed{\tt{ f(5) \:  \ne \: \displaystyle\lim_{x \to 5}\rm f(5) \: }}

\rm\implies \:f(x) \: is \: not \: continuous \: at \: x = 5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO LEARN

If f and g are two continuous function then

  • f + g is also continuous.

  • f - g is also continuous

  • f × g is also continuous

  • f[g(x)] is also continuous

  • g[f(x)] is also continuous
Similar questions