it a/b=c/d then prove that (a²+c²)/(b²+d²)=ca/db=c²/d²
Answers
Given : a/b = c /d
To Find : prove that
(a²+c²) / (b²+d²)= ca/ db = c²/d²
Solution:
Let a/b = c/d = k
=> a = bk and c = dk
(a²+c²)/ (b²+d² )
= ( (bk)² + (dk)² )/ (b² + d²)
= k²(b² + d²)/(b² + d²)
= k²
ca/db
= dk.bk/db
= dbk²/db
= k²
c²/d²
= (dk)²/d²
= d²k²/d²
= k²
(a²+c²) / (b²+d²)= ca/ db = c²/d² = k²
Hence Proved
(a²+c²)/(b²+d²)=ca/db=c²/d²
Learn More:
if (ad-bc)/(ab-c+d)=(ac-bd)/(a-b+cd)
https://brainly.in/question/14802463
(a+c)⁴/(b+d)⁴
https://brainly.in/question/2359072
Answer:
Let a/b = c/d = k
=> a = bk and c = dk
(a²+c²)/ (b²+d² )
= ( (bk)² + (dk)² )/ (b² + d²)
= k²(b² + d²)/(b² + d²)
= k²
ca/db
= dk.bk/db
= dbk²/db
= k²
c²/d²
= (dk)²/d²
= d²k²/d²
= k²
(a²+c²) / (b²+d²)= ca/ db = c²/d² = k²
Hence Proved
(a²+c²)/(b²+d²)=ca/db=c²/d²
Step-by-step explanation: kindly brainlies