Math, asked by bheemanianurag, 10 months ago

it has multichoices jee adv 2015

Attachments:

Answers

Answered by ITzBrainlyGuy
13

Answer:

{ \sf{ \pink{hey \: there \: here \: is \: your \: answer}}} \\  { \sf{ s_n =  \sum_{k = 1} ^{4n} ( - 1)^{ \frac{k(k + 1)}{2}  } {k}^{2}  \implies \: a)1056 \: d)1332 }}

Attachments:
Answered by Anonymous
9

Question:

S_{n}=\sum\limits_{k=1}^{4n} {( - 1)}^{\frac{k(k + 1)}{2} }  {k}^{2} , then S_{n} can take the values

(a) 1056

(b) 1088

(c) 1120

(d) 1332

Answer:

\large\boxed{\sf{(a)1056\;\;and\;\;(d)1332}}

Step-by-step explanation:

Given that,

S_{n}=\sum\limits_{k=1}^{4n} {( - 1)}^{\frac{k(k + 1)}{2} }  {k}^{2}

Putting the limits and solving further , we get,

 =  -  {1}^{2}  -  {2}^{2}  +  {3}^{2}  +  {4}^{2}  -  {5}^{2}  -  {6}^{2}  +  {7}^{2}  +  {8}^{2}  - ....... \\  \\  = ( {3}^{2}  -  {1}^{2} )  + ( {4}^{2}  -  {2}^{2} ) + ( {7}^{2}  -  {5}^{2} ) + ( {8}^{2}  -  {6}^{2} ) + ..... \\  \\   = 8 + 12 + 24 + ........ \\  \\ =2 \left[(4 + 12 + 20 + ....) + (6 + 14 + 22 + .....)\right] \\  \\  = 2\left[n(4 + 4n - 4) + n(6 + 4n - 4)\right] \\  \\  = 2\left[4 {n}^{2} +n (4n + 2) \right] \\  \\  = 2(8 {n}^{2}  + 2n) \\  \\  = 4n(4n + 1)

Now, for the given options, we have,

(a) 1056 = 32 × 33

(b) 1088 = 32 × 34

(c) 1120 = 32 × 35

(d) 1332 = 36 × 37

Here, only options (a) and (d) satisfy for the following conditon.

For (a), n = 8

For (d), n = 9

Hence, the correct options are (a)1056 and (d)1332

Similar questions