it has to be solved by cross multiplication only plz answer this.on 13 may I have to give exam
Attachments:
Answers
Answered by
1
Given : ax + by = a - b ----------- (1)
Given : bx - ay = a + b ------- (2)
Multiply (1) * a and (2) * b, we get
a^2x + bay = a^2 - ab ------ (3)
b^2x - bay = ab + b^2 ------ (4)
On solving (3) & (4), we get
a^2x+ bay + b^2x - bay = a^2 - ab + ab + b^2
a^2x + b^2x = a^2 + b^2
x(a^2 + b^2) = a^2 + b^2
x = a^2 + b^2/a^2 + b^2
x = 1.
Now,
Substitute x = 1 in (2), we get
bx - ay = a + b
b - ay = a + b
-ay = a + b - b
-ay = a
y = -a/a
y = -1
y = -1.
Therefore x = 1 and y = -1.
Hope this helps!
Given : bx - ay = a + b ------- (2)
Multiply (1) * a and (2) * b, we get
a^2x + bay = a^2 - ab ------ (3)
b^2x - bay = ab + b^2 ------ (4)
On solving (3) & (4), we get
a^2x+ bay + b^2x - bay = a^2 - ab + ab + b^2
a^2x + b^2x = a^2 + b^2
x(a^2 + b^2) = a^2 + b^2
x = a^2 + b^2/a^2 + b^2
x = 1.
Now,
Substitute x = 1 in (2), we get
bx - ay = a + b
b - ay = a + b
-ay = a + b - b
-ay = a
y = -a/a
y = -1
y = -1.
Therefore x = 1 and y = -1.
Hope this helps!
siddhartharao77:
Gud luck!
Similar questions