Math, asked by ahervandan39, 9 months ago

it is for std 10 lesson no 6 practice 6.1 Q . no 6 (4) sum if u known the answer then only reply answer

Attachments:

Answers

Answered by BrainlyTornado
16

GIVEN:

(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ

TO PROVE:

(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ

PROOF:

 \green{\boxed{ \large{ \bold{sec  \: \theta =  \frac{1}{cos  \: \theta}}}}}

 \left( \dfrac{1}{cos \: \theta} - cos \: \theta\right)cot  \: \theta +tan \: \theta

 \left( \dfrac{1 -  {cos }^{2}  \theta}{cos \: \theta}\right)cot  \: \theta +tan \: \theta

 \red{\boxed{ \large{ \bold{1 -  {cos }^{2}  \theta =  {sin}^{2}  \: \theta}}}}

 \left( \dfrac{{sin}^{2}  \theta}{cos \: \theta}\right)cot  \: \theta +tan \: \theta

 \blue{\boxed{ \large{ \bold{cot \:  \theta =  \frac{ cos  \:  \theta}{sin \:  \theta}}}}}

 \orange{\boxed{ \large{ \bold{tan \:  \theta =  \frac{ sin  \:  \theta}{cos \:  \theta}}}}}

 \left( \dfrac{{sin}^{2}  \theta}{cos \: \theta}\right)\left( \dfrac{{sin}  \theta}{cos \: \theta} + \dfrac{cos  \: \theta}{sin \: \theta}\right)

 \left( \dfrac{{sin}^{2}  \theta}{cos \: \theta}\right)\left( \dfrac{{sin ^{2} }  \theta +  {cos}^{2} \theta }{cos \: \theta \: sin \:  \theta} \right)

 \purple{\boxed{ \large{ \bold{{{sin ^{2} }  \theta +  {cos}^{2} \theta = 1}}}}}

 \left( \dfrac{sin\theta}{cos \: \theta}\right)\left( \dfrac{1}{cos \: \theta} \right)

tan \: \theta \: \sec \: \theta

L.H.S = R.H.S

(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ

HENCE PROVED.

Answered by Yogesh6972
0

Answer:

I think that it is helpful to you and please mark it as brainleist

Attachments:
Similar questions