It is given that cos 6 = a cos 6 + b Cos 4 + c cos 4 + d cos 3 + e cos 2 + f cos + g. Then the value of (a-c)2 +b2+ d2-(e-g)2-2 f2 is equal to ?
Answers
Answered by
0
Answer:
off ever publicly see cc am
Answered by
0
Answer:
1=RHS
Step-by-step explanation:
sin6θ+cos6θ+3sin2θcos2θ
⇒LHS=(sin2θ)3+(cos2θ)3+3sin2θcos2θ
Using, [a3+b3=(a+b)3−3ab(a+b)]
⇒LHS=(sin2θ+cos2θ)3−3sin2θcos2θ(sin2θ+cos2θ)3+3sin2θcos2θ
⇒LHS=1−3sin2θcos2θ+3sin2θcos2θ=1=RHS
Similar questions