History, asked by chaurasiapriyanka966, 4 days ago

It made possible to stone food and use it over a longer period. ( 5std answer name the following)

Answers

Answered by prakashcor
0

Answer:Find a basis for the subspace of R4 spanned by the given vectors.

(1,1,-5,-6), (2,0,2,-2), (3,-1,0,8).

2. Find a subset of the vectors that forms a basis for the space spanned by the vectors, then express each vector that is not in the basis as a linear combination of the basis vectors.

v1=(1,0,1,1), v2 = (-4,4,-1,4), v3 = (2,4,5,10), v4 = (-10,4,-7,-2)

3. Find a subset of the vectors that forms a basis for the space spanned by the vectors, then express each vector that is not in the basis as a linear combination of the basis vectors.

v1=(1,-1,5,2), v2 = (-2,3,1,0), v3 = (5,-6,14,6), v4 = (0,4,2,-3), v5 = (3,15,45,2)

4. Determine whether b is in the column space of A, and if so, express b as a linear combination of the column vectors of A.

A = 3 4 B = -1

6 -9 15

Expert's answer

1.As the set { v_1,v_2,v_3v  

1

,v  

2

,v  

3

 } span a subspace of R^{4}R  

4

 

then, c_1v_1+c_2v_2+c_3v_3=0c  

1

v  

1

+c  

2

v  

2

+c  

3

v  

3

=0

c_1(1,1,-5,-6)+c_2(2,0,2,-2)+c_3(3,-1,0,8)=0c  

1

(1,1,−5,−6)+c  

2

(2,0,2,−2)+c  

3

(3,−1,0,8)=0

We get following equations from above equation

c_1+2c_2+3c_3=0c  

1

+2c  

2

+3c  

3

=0

c_1-c_3=0c  

1

−c  

3

=0

-5c_1+2c_2=0−5c  

1

+2c  

2

=0

-6c_1-2c_2+8c_3=0−6c  

1

−2c  

2

+8c  

3

=0

From the above equation we can easily conclude that c_1=c_2=c_3=0c  

1

=c  

2

=c  

3

=0

So,{ v_1,v_2,v_3v  

1

,v  

2

,v  

3

 } are linearly independent.

Thus, the set is the basis for the subspace of R4.

2.As the set v_1,v_2,v_3,v_4v  

1

,v  

2

,v  

3

,v  

4

 span R4.

then,c_1v_1+c_2v_2+c_3v_3+c_4v_4=0c  

1

v  

1

+c  

2

v  

2

+c  

3

v  

3

+c  

4

v  

4

=0

c_1(1,0,1,1)+c_2(-4,4,-1,4)+c_3(2,4,5,10)+c_4(-10,4,-7,-2)=0c  

1

(1,0,1,1)+c  

2

(−4,4,−1,4)+c  

3

(2,4,5,10)+c  

4

(−10,4,−7,−2)=0

We get equations:

c_1 -4 c_2 +2 c_3 -10 c_4 = 0c  

1

−4c  

2

+2c  

3

−10c  

4

=0

4 c_2 +4 c_3 +4 c_4 = 04c  

2

+4c  

3

+4c  

4

=0

c_1 -c_2 +5 c_3 -7 c_4 = 0c  

1

−c  

2

+5c  

3

−7c  

4

=0

c_1 +4 c_2 +10 c_3 -2 c_4 = 0c  

1

+4c  

2

+10c  

3

−2c  

4

=0

Solving these equations we can easily get

c_1 = -6 c_3 +6 c_4c  

1

=−6c  

3

+6c  

4

 

c_2 = -c_3 -c_4c  

2

=−c  

3

−c  

4

 

c_3 = arbitraryc  

3

=arbitrary

c_4 = arbitraryc  

4

=arbitrary

{ v_1,v_2v  

1

,v  

2

 } span { v_3,v_4v  

3

,v  

4

 }

{v_1,v_2v  

1

,v  

2

 } spans a subspace of R4 and vectors are linearly independent.Thus,vectors serve as the basis of a subspace of R4.

3.c_1v_1+c_2v_2+c_3v_3+c_4v_4+c_5v_5=0c  

1

v  

1

+c  

2

v  

2

+c  

3

v  

3

+c  

4

v  

4

+c  

5

v  

5

=0

c_1(1,-1,5,2)+c_2(-2,3,1,0)+c_3(5,-6,14,6)+c_4(0,4,2,-3)+c_5(3,15,45,2)=0c  

1

(1,−1,5,2)+c  

2

(−2,3,1,0)+c  

3

(5,−6,14,6)+c  

4

(0,4,2,−3)+c  

5

(3,15,45,2)=0

We get the following equations from the above equation.

c_1 -2 c_2 +5 c_3 +3 c_5 = 0c  

1

−2c  

2

+5c  

3

+3c  

5

=0

- c_1 +3 c_2 -6 c_3 +4 c_4 +15 c_5 = 0−c  

1

+3c  

2

−6c  

3

+4c  

4

+15c  

5

=0

5 c_1 +c_2 +14 c_3 +2 c_4 +45 c_5 = 05c  

1

+c  

2

+14c  

3

+2c  

4

+45c  

5

=0

2 c_1+6 c_3 -3 c_4 +2 c_5 = 02c  

1

+6c  

3

−3c  

4

+2c  

5

=0

Solving these equations we can get:

c_1 = -3 c_3 -7 c_5c  

1

=−3c  

3

−7c  

5

 

c_2 =c_3 -2 c_5c  

2

=c  

3

−2c  

5

 

c_3 = arbitraryc  

3

=arbitrary

c_4 = -4 c_5c  

4

=−4c  

5

 

c_5 = arbitraryc  

5

=arbitrary

{v_1,v_2,v_4v  

1

,v  

2

,v  

4

 } span {v_3,v_5v  

3

,v  

5

 }

{ v_1,v_2,v_4v  

1

,v  

2

,v  

4

 } span a subspace of R4 and vectors are linearly independent.Thus, vectors serve as the basis of a subspace of R4.

4.A=\begin{bmatrix} 3 & 4 \\ 6 & -9 \end{bmatrix}A=[  

3

6

 

4

−9

]

B=\begin{bmatrix} -1 \\ 15 \end{bmatrix}B=[  

−1

15

]

B=c_1\begin{pmatrix} 3 \\ 6 \end{pmatrix}+c_2\begin{pmatrix} 4 \\ -9 \end{pmatrix}B=c  

1

(  

3

6

)+c  

2

(  

4

−9

)

3c_1+4c_2=-13c  

1

+4c  

2

=−1

6c_1-9c_2=156c  

1

−9c  

2

=15

c_1=1,c_2=-1c  

1

=1,c  

2

=−1

Yes, B is in the column space of A as it can be expressed as a linear combination of column vectors of A.

Explanation:

Similar questions