Math, asked by rajedhiya, 9 months ago

it's a two mark question.... Please answer with correct explanation​

Attachments:

Answers

Answered by angad1480
1

Step-by-step explanation:

question asan hai

but ncert lagao tab bhi kl ke paper me sb questions touchable hoga

I am basic maths student

Attachments:
Answered by Rohit18Bhadauria
2

Answer:

To Prove:

  • \sf{\dfrac{2\cos^{2}\theta-1}{\sin\theta \cos\theta}=\cot\theta-\tan\theta}

Solution

We should know following things before solving the question:

\rightarrow\sf{\cos2\theta=2\cos^{2}\theta-1= \cos^{2}\theta-\sin^{2}\theta }

\rightarrow\sf{\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}}

\rightarrow\sf{\dfrac{\cos\theta}{\sin\theta}=\cot\theta}

\rightarrow\sf{\dfrac{\sin\theta}{\cos\theta}=\tan\theta}

Now, using above identities, we get

L.H.S.=\sf{\dfrac{2\cos^{2}\theta-1}{\sin\theta \cos\theta}}

\implies\sf{\dfrac{\cos2\theta}{\sin\theta \cos\theta}}

\implies\sf{\dfrac{\cos^{2}\theta-\sin^{2}\theta}{\sin\theta \cos\theta}}

\implies\sf{\dfrac{\cos^{2}\theta}{\sin\theta \cos\theta}-\dfrac{\ sin^{2}\theta}{\sin\theta \cos\theta}}

\implies\sf{\dfrac{\cos\theta}{\sin\theta}-\dfrac{\ sin\theta}{\cos\theta}}

\implies\sf{\cot\theta-\tan\theta}

\implies\sf{R.H.S.}

Since, L.H.S.=R.H.S.

Hence Proved

Similar questions