Physics, asked by ramitaa1228, 4 months ago

It’s differentiation, can someone please show the steps and explain, thank you

Attachments:

Answers

Answered by aryan073
7

Given :

\\ \red\bigstar\bf{Differentiation \: of \: sinx.cosecx}

To Find :

\blue\bigstar\bf{Differentiation \: of \: sinxcosx =?}

Formula :

 \pink \bigstar \tt \:  \frac{d}{dx}sinx = cosx \\  \\  \pink \bigstar \tt \:  \frac{d}{dx}  cosx =  - sinx \\  \\  \pink \bigstar \tt \:  \frac{d}{dx} cosecx =   - cosecx.cotx \\  \\  \pink \bigstar \tt \:  \frac{d}{dx} cotx =  - {cosec}^{2}x  \\  \\  \pink \bigstar \tt\frac{d}{dx} tanx =  {sec}^{2} x

Solution :

According to the given conditions :

• Consider a function y=f(x) in which y=sinx.cosecx

• As we can see the function is composite so we use Product rule .

 \implies \sf \: y = sinxcosecx \\  \\  \implies \bf \bullet \: \: differentiating \: the \: equation \: with \: to \: x \\  \\  \implies \sf \:   \frac{dy}{dx} =  \frac{d}{dx} sinx.cosecx \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} sinx.cosecx +  \frac{d}{dx} cosecx.sinx \\  \\  \implies \sf \frac{dy}{dx}  = cosx.cosecx -  cosecx.cotx.sinx \\  \\  \implies \sf \:  \frac{dy}{dx}  = cosx.cosecx - cosecx. \frac{cosx}{sinx}  \times sinx \\  \\  \implies \sf \:  \frac{dy}{dx}  = cosx.cosecx - cosecx.cotx \\  \\  \implies \boxed { \sf{  \frac{dy}{dx}  = 0}}

The correct answer is 0

________________________________________

Additional information :

\\ \red\bigstar\bf{ secx=\dfrac{1}{cosx}}

\\ \red\bigstar\bf{tanx=\dfrac{1}{cotx}=\dfrac{sinx}{cosx}}

\\ \red\bigstar\bf{cosecx=\dfrac{1}{sinx}}

\\ \red\bigstar\bf{cotx=\dfrac{1}{tanx}}

\\ \red\bigstar\bf{cotx=\dfrac{cosx}{sinx}}

Similar questions