Math, asked by MonyaP, 11 months ago

it's urgent please solve this question... i will give 5 star rating and mark brainliest if correct

Attachments:

Answers

Answered by raushan6198
0

Step-by-step explanation:

for \: roots \: to \: be \:  real \: \:  \: and\: equal \: of \: a \: qudratic \: equation \\  \\ discriminant \: (d) \:  = 0 \\  \\ d \:  =  {b}^{2}  - 4ac \:  = 0 \:  \:  \:  \:  \:  \: .......(1) \\  \\ where \: a = 2k + 1 \\ b \:  = 2(k + 3) \\  \:  \:  \: c =  - (k + 5) \\  \\ putting \: the \: values \: of \: a \:  \: b \:  \: c \: in \: equation \: (1) \\  \\  {(2k + 6)}^{2}  - 4 \times (2k + 1) \times  ( - (k  + 5)) = 0 \\  =  > 4 {k}^{2}  + 2 \times 2k \times 6  +  {6}^{2}   +  4(2 {k}^{2}  + k + 10k + 5) = 0 \\  =  > 4 {k}^{2}  + 24k + 36 + 8 {k}^{2}  + 4k + 40k + 20 = 0 \\  =  > 12 {k}^{2}  + 68k + 56 = 0 \\  =  > 4(3 {k}^{2}  + 17k + 14) = 0 \\  =  > 3 {k}^{2}  + 17k + 14 = 0 \\  =  > 3 {k}^{2}  + 14k + 3k + 14 = 0 \\  =  > k(3k \:  + 14) + 1(3k + 14) = 0 \\  =  > (k + 1)(3k + 14) = 0 \\  =  > k + 1 = 0 \:  \:  \:  \:  \:  |  \: 3k \:  + 14 = 0 \\  =  >  \:  \: k \:  \:  =  \:  \:  - 1 \:  \:  \:  | k \:  \:  =  \frac{ - 14}{3}

Similar questions