it tan x = 3/4 , π<x<3π/2 . find the value sin x/2, cos π/2, tan π/2.
Answers
Answered by
5
Given π<x<3π2andtanx=34
π<x<3π2
⇒π2<x2<3π4→x2∈ 2nd quadrant
This means
sin(x2)→+ve
cos(x2)→−ve
tan(x2)→−ve
Now tanx=34
⇒2tan(x2)1−tan2(x2)=34
⇒8tan(x2)=3−3tan2(x2)
⇒3tan2(x2)+8tan(x2)−3=0
⇒3tan2(x2)+9tan(x2)−tan(x2)−3=0
⇒3tan(x2)(tan(x2)+3)−1(tan(x2)+3)=0
⇒(3tan(x2)−1)(tan(x2)+3)=0
This means
tan(x2)=13→not acceptable as tan(x2)→−ve
So tan(x2)→−3
Now
cos(x2)=1sec(x2)=−1√1+tan2(x2)
=−1√1+(−3)2=−1√10
Again
sin(x2)=tan(x2)×cos(x2)
=−3×(−1√10)=3√10
I hope this is correct and if it helped you please mark it brainliest
π<x<3π2
⇒π2<x2<3π4→x2∈ 2nd quadrant
This means
sin(x2)→+ve
cos(x2)→−ve
tan(x2)→−ve
Now tanx=34
⇒2tan(x2)1−tan2(x2)=34
⇒8tan(x2)=3−3tan2(x2)
⇒3tan2(x2)+8tan(x2)−3=0
⇒3tan2(x2)+9tan(x2)−tan(x2)−3=0
⇒3tan(x2)(tan(x2)+3)−1(tan(x2)+3)=0
⇒(3tan(x2)−1)(tan(x2)+3)=0
This means
tan(x2)=13→not acceptable as tan(x2)→−ve
So tan(x2)→−3
Now
cos(x2)=1sec(x2)=−1√1+tan2(x2)
=−1√1+(−3)2=−1√10
Again
sin(x2)=tan(x2)×cos(x2)
=−3×(−1√10)=3√10
I hope this is correct and if it helped you please mark it brainliest
Similar questions