Math, asked by topnotch69, 20 days ago

it tan²x + cot²x = 2, find x where 0⁰ < x⁰ < 90⁰​

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ value \: of \: x  \:  (inclination \: ) \\  \\ given \: that :  \\ tan {}^{2}  \: x + cot {}^{2}  \: x = 2  \\   \\ tan {}^{2} x +  \frac{1}{tan {}^{2} \: x }  = 2 \\  \\ let \: here \: then \\ tan {}^{2}  \: x = p \\  \\ thus \: then \\  \: resubstituting  \:  \:  accordingly  \\ \: we \: get \\ p +  \frac{1}{p}  = 2 \\  \\  \: p {}^{2}  + 1 = 2p \\ ∴ \: p {}^{2}  - 2p + 1 = 0  \\∴ \:  p {}^{2}  - p - p + 1 = 0 \\  \\ p(p - 1) - 1(p - 1) = 0 \\   (p - 1)(p - 1) = 0 \\  \\ p - 1 = 0 \\ ∴ \: p = 1

thus \: then \\ tan {}^{2}  \: x = p \\  tan {}^{2} \: x = 1 \\  \\ tan \: x = 1 \:  \: or \:  \: tan \: x =  - 1 \\ but \: if \: we \: take \\ tan \: x =  - 1 \\ then \: we \: have \\  x \: would \: lie \: in \: either \: in \\ second \: or \: fourth \: quadrant \\ and \: since \: here \\ 0 &lt; x &lt; 90 \\  \\ tan \: x =  - 1 \:  \: is \: absurd \\ hence \: then \\ tan \: x = 1 \\  \\ we \: know \: that \\ tan \: 45 = tan \:  \frac{\pi}{4}  = 1 \\  \\ ∴ \:  \: x =  \frac{\pi {}^{c} }{4}

Similar questions