Math, asked by deeparathod2404, 10 months ago

It tanA+ tantB + tanA x tanB = 1
then A+B=?

Answers

Answered by Anonymous
6

AnswEr :

Given that,

 \sf \: tan \: A + tan \: B + tan \: A.tan \: B = 1

To finD :

The value of A + B.

Now,

 \implies \sf \: tan \: A + tan \: B = 1 - tan \: A.tan \: B

Dividing by 1 - tan(A).tan(B) on both sides,

 \implies \sf \:  \dfrac{tan \: A+ tan \: B}{1 - tan \: A.tan \: B}= \cancel{ \dfrac{ 1 - tan \: A.tan \: B}{1 - tan \: A.tan \: B}}

 \implies \sf \:  \dfrac{tan \: A+ tan \: B}{1 - tan \: A.tan \: B}= 1

We know that,

\star  \: \boxed{ \boxed{ \sf tan(x + y) =  \dfrac{tan \: x + tan \: y}{1 - tan \: x.tan \: y} }}

Thus,

 \implies \sf \: tan(A + B) = 1 \\  \\  \implies \large{ \boxed{ \boxed{ \sf A+ B = 45}}}

The value of A + B is 45°.

Answered by Rohith200422
7

Question:

It tanA+ tanB + (tanA × tanB) = 1, then A+B=?

To find:

To find the value of A + B

Answer:

The \: value \: of \: \underline\bold{A+B \: is \: 45°}

Step-by-step explanation:

tanA + tanB + (tanA \times tanB) = 1

 \longrightarrow tanA + tanB  = 1 - tanA \times tanB

Dividing by 1 - tanA × tanB

\longrightarrow  \frac{tanA + tanB}{1 - tanA \times tanB}  =  \frac{1 - tanA \times tanB}{1 - tanA \times tanB}

\longrightarrow  \frac{tanA + tanB}{1 - tanA \times tanB}  = 1

Therefore,

\boxed{tan(x + y) =  \frac{tanx + tany}{1 - tanx \times tany}}

Now,

\longrightarrow  tan(A + B)= 1

We know that,

 \boxed{tan 45° = 1}

\longrightarrow tan(A + B)= 1

\boxed{ A + B = 45° }

Thus the value of A + B = 45°

Similar questions