Math, asked by kurohonjo321, 6 hours ago

It would be great if someone could help me with the question on the right. Please include working and solution

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that

  • Bigger square is represented as ABCD

  • Smaller square is represented as EFGH

Let further assume that

  • EFGH intersects the sides of square ABCD at I, J, K, L, M, N, O, P respectively as shown in attachment.

According to given statement,

 \purple{\rm :\longmapsto\:Area_{(EFGH)} = 85 \:  {cm}^{2} \:  -  -  -  - (1)}

Now,

  • Side of square ABCD, = 10 cm

So,

 \purple{\rm :\longmapsto\: Area_{(ABCD)} =  {(10)}^{2}  = 100 \:  {cm}^{2}  -  -  - (2) \: }

Now,

 \green{\rm :\longmapsto\:Area_{(dark \: green \: \triangle)} = 4 \times \dfrac{1}{2} \times 4 \times 3 = 24 \:  {cm}^{2}}

Now,

 \red{\rm :\longmapsto\:Area_{(IJKLMNOP)}}

\rm \:  =  \: Area_{(ABCD)} - Area_{(dark \: green \: \triangle's)}

\rm \:  =  \: 100 - 24

\rm \:  =  \: 76 \:  {cm}^{2}

\rm\implies \:\boxed{\tt{ Area_{(IJKLMNOP)} = 76 \:  {cm}^{2}}} -  -  -  - (3)

Now,

 \green{\rm :\longmapsto\:Area_{(light \: green \: \triangle's)}}

\rm \:  =  \: Area_{(EFGH)} - Area_{(IJKLMNOP)}

\rm \:  =  \: 85 - 76

\rm \:  =  \: 9 \:  {cm}^{2}

\rm\implies \:\boxed{\tt{ Area_{(light \: green \: \triangle's)} = 9 \:  {cm}^{2} }}

Thus,

\rm\implies \:Area_{(dark \: green \: \triangle's)} + Area_{(light \: green \: \triangle's)}

\rm \:  =  \: 24 + 9

\rm \:  =  \: 33 \:  {cm}^{2}

So,

 \green{\rm\implies \boxed{\sf{ \:Area_{(dark \: green \: \triangle's)} + Area_{(light \: green \: \triangle's)} = 33  \: {cm}^{2} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Answered by RvChaudharY50
1

Solution :-

→ Side of larger square = 10 cm

So,

→ Area of larger square = (side)² = (10)² = 100 cm² .

now,

→ Area of dark green ∆ = (1/2) * Base * Perpendicular height { since angle of a square is equal to 90° , so it is a right angled ∆ . }

So,

→ Area of 4 dark green identical ∆'s = 4 * (1/2) * 3 * 4 = 24 cm² .

then,

→ Area of larger square which is not shaded (white portion) = Total area - Area of 4 dark ∆'s = 100 - 24 = 76 cm² .

now, given that,

→ Area of smaller square = 85 cm²

So,

→ Area of 4 light green ∆'s = Area of smaller square - White portion area = 85 - 76 = 9 cm²

therefore,

→ Total shaded area of 8 ∆'s = Area of 4 dark green identical ∆'s + Area of 4 light green ∆'s = 24 + 9 = 33 cm² (Ans.)

Learn more :-

Diagonals AC and BD of quadrilateral ABCD meet at E. IF AE = 2 cm, BE = 5 cm, CE = 10 cm, 8 सेमी.

https://brainly.in/question/27312677

Let abcd be a rectangle. the perpendicular bisector of line segment bd intersect ab and bc in point e and f respectively...

https://brainly.in/question/27813873

Similar questions