Math, asked by vrushali8736, 4 months ago

Its difficult for me ​

Attachments:

Answers

Answered by shadowsabers03
8

41. Given,

\displaystyle\longrightarrow L=\lim_{x\to\infty}\left(\dfrac{1}{x}\right)^{\frac{1}{x}}

Taking log,

\displaystyle\longrightarrow\log L=\lim_{x\to\infty}\dfrac{1}{x}\log\left(\dfrac{1}{x}\right)

\displaystyle\longrightarrow\log L=\lim_{x\to\infty}\dfrac{\log\left(\dfrac{1}{x}\right)}{x}

\displaystyle\longrightarrow\log L=\lim_{x\to\infty}\dfrac{\log\left(x^{-1}\right)}{x}

\displaystyle\longrightarrow\log L=-\lim_{x\to\infty}\dfrac{\log x}{x}

Applying L'hospital's Rule,

\displaystyle\longrightarrow\log L=-\lim_{x\to\infty}\dfrac{\left(\dfrac{1}{x}\right)}{1}

\displaystyle\longrightarrow\log L=-\lim_{x\to\infty}\dfrac{1}{x}

\displaystyle\longrightarrow\log L=-\dfrac{1}{\infty}

\displaystyle\longrightarrow\log L=0

\displaystyle\longrightarrow\underline{\underline{L=1}}

42. Given,

\displaystyle\longrightarrow L=\lim_{x\to0}(\sin x)^{\tan x}

Taking log,

\displaystyle\longrightarrow\log L=\lim_{x\to0}\tan x\cdot\log(\sin x)

\displaystyle\longrightarrow\log L=\lim_{x\to0}\dfrac{\log(\sin x)}{\cot x}

Applying L'hospital's Rule,

\displaystyle\longrightarrow\log L=\lim_{x\to0}\dfrac{\left(\dfrac{\cos x}{\sin x}\right)}{-\csc^2x}

\displaystyle\longrightarrow\log L=-\lim_{x\to0}\dfrac{\left(\dfrac{\sin x\cos x}{\sin^2x}\right)}{\left(\dfrac{1}{\sin^2x}\right)}

\displaystyle\longrightarrow\log L=-\lim_{x\to0}\sin x\cos x

\displaystyle\longrightarrow\log L=-\dfrac{1}{2}\lim_{x\to0}\sin(2x)

\displaystyle\longrightarrow\log L=-\dfrac{1}{2}\sin(2\cdot0)

\displaystyle\longrightarrow\log L=0

\displaystyle\longrightarrow\underline{\underline{L=1}}


amansharma264: Great
Answered by mathdude500
2

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ of 41 :

 \displaystyle\implies  \rm \: L=\lim_{x\to\infty}\left(\dfrac{1}{x}\right)^{\frac{1}{x}}

Taking log, on both sides, we get

\displaystyle\implies \rm logL=\lim_{x\to\infty}log \: \left(\dfrac{1}{x}\right)^{\frac{1}{x}}

\displaystyle\implies \rm logL=\lim_{x\to\infty} \: \dfrac{1}{x} log \: \left(\dfrac{1}{x}\right)

\displaystyle\implies \rm logL=\lim_{x\to\infty} \: \dfrac{ log( {x}^{ - 1} ) }{x}

\displaystyle\implies \rm logL=\lim_{x\to\infty}\dfrac{ -  log(x) }{x}

Since, it an indeterminant form,

so

Using L - Hospital Rule, we get

\displaystyle\implies \rm logL=\lim_{x\to\infty}\dfrac{ - 1}{x}

\rm :\implies\: log(L)  = 0

\rm :\implies\:L =  {e}^{0}  = 1

 \boxed{ \pink{ \bf \: \displaystyle\implies \rm \lim_{x\to\infty}\: \left(\dfrac{1}{x}\right)^{\frac{1}{x}} \:  =  \tt \:1 }}

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ of 42 :

\displaystyle\implies \rm L=\lim_{x\to0}\: \left(sinx\right)^{tanx}

Taking log, on both sides, we get

\displaystyle\implies \rm log \: L=\lim_{x\to0}log \: \left(sinx\right)^{tanx}

\displaystyle\implies \rm logL=\lim_{x\to0}tanx \: log \: \left(sinx\right)

\displaystyle\implies \rm logL=\lim_{x\to0} \: \dfrac{ log(sinx) }{cotx}

Since, its an indeterminant form,

so,

Using L - Hospital Rule, we get

\displaystyle\implies \rm logL=\lim_{x\to0} \: \dfrac{\dfrac{1}{sinx}  \times cosx}{ -  {cosec}^{2} x}

\displaystyle\implies \rm logL=\lim_{x\to0} \: \dfrac{ -  {sin}^{2} x \times cosx }{sinx}

\displaystyle\implies \rm logL=\lim_{x\to0}( - sinx \: cosx)

\rm :\implies\: log(L)  = 0

\rm :\implies\:L =  {e}^{0}  = 1

\: \boxed{ \pink{ \bf \:  \displaystyle\implies \rm \lim_{x\to0}log \: \left(sinx\right)^{tanx}\:  =  \tt \: 1}}

Similar questions