Math, asked by chaitry12345, 1 year ago

ITS VERY URGENT........... .. . ..................(x^a/x^b)^1/ab . (x^b/x^c)^1/bc . (x^c/x^a)^1/ac=?

Answers

Answered by abhi569
5

 =  > (\frac{ {x}^{a} }{ {x}^{b} }  {})^{ \frac{1}{ab} }   \times ( \frac{ {x}^{b} }{ {x}^{c} } ) {}^{ \frac{1}{bc} }   \times (  \frac{ {x}^{c} }{ {x}^{a} } ) {}^{ \frac{1}{ac} }



By the properties of Exponents.



 =  >  { ({x}^{a - b})  }^{  \frac{1}{ab} }  \times    { {(x}^{b - c} )}^{bc}  \times  { {(x}^{c - a} )}^{ \frac{1}{ac} }



 =  >   {x}^{(a - b) \times  \frac{1}{ab} } \:  \:   \times  \:  \:  {x}^{ (b -   c) \times \frac{1}{ bc}}  \:  \:  \times  \:  \:  {x}^{(c - a) \times  \frac{1}{ac} }



 =  >  {x}^{ \frac{a - b}{ab} }  \:  \:  \times  \:  \:  {x}^{ \frac{b - c}{bc} }  \:  \: \times  \:  \:   {x}^{ \frac{c - a}{ca} }




 =  > x \frac{(a - b)c + (b - c)a + (c - a)b}{abc}



 =  >  {x}^{ ac   -  bc + ab - ac + bc - ab}  \\  \\  \\  \\  =  >  {x}^{ \cancel{ac} -  \cancel{ac}   -  \cancel{ bc}  +  \cancel{bc}  +  \cancel{ab}  -  \cancel{ab}}  \\  \\  \\  =  >  {x}^{0}




From the properties of Exponents, we know that anything having 0 as its power is equal to 1


= > 1




Answer : 1
Similar questions